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Abstract—Misleading method names in software projects can 
confuse developers, which may lead to software defects and affect 
code understandability. In this paper, we present De e p Na m e , 
a context-based, deep learning approach to detect method name 
inconsistencies and suggest a proper name for a method. The key 
departure point is the philosophy of “Show Me Your Friends, I’ll 
Tell You Who You Are”. Unlike the state-of-the-art approaches, in 
addition to the method’s body, we also consider the interactions 
of the current method under study with the other ones including 
the caller and callee methods, and the sibling methods in 
the same enclosing class. The sequences of sub-tokens in the 
program entities’ names in the contexts are extracted and used 
as the input for an RNN-based encoder-decoder to produce the 
representations for the current method. We modify that RNN 
model to integrate the copy mechanism and our newly developed 
component, called the non-copy mechanism, to emphasize on the 
possibility of a certain sub-token not to be copied to follow the 
current sub-token in the currently generated method name.

We conducted several experiments to evaluate De e p Na m e  on 
large datasets with +14M methods. For consistency checking, 
D e e p Na m e  improves the state-of-the-art approach by 2.1%, 
19.6%, and 11.9% relatively in recall, precision, and F-score, 
respectively. For name suggestion, De e p Na m e  improves rela-
tively over the state-of-the-art approaches in precision (1.8%- 
30.5%), recall (8.8%-46.1%), and F-score (5.2%-38.2%). To 
assess D e e p Na m e ’s usefulness, we detected inconsistent methods 
and suggested new method names in active projects. Among 50 
pull requests, 12 were merged into the main branch. In total, in 
30/50 cases, the team members agree that our suggested method 
names are more meaningful than the current names.

Index Terms—Naturalness of Software, Deep Learning, Entity 
Name Suggestion, Inconsistent Method Name Checking. I.

I. In t r o d u c t i o n

Meaningful and succinct names of program entities play a 
vital role in code understandability [3]. Misleading names in 
software libraries can confuse developers and cause them make 
API misuses, leading to serious defects [10]. During software 
development, the name of a method can become inconsistent 
with respect to its intended functionality. The first scenario is 
that the inconsistency occurs during the coding of a method, 
when a misleading or confusing name is given to the method. 
In the second scenario, inconsistency occurs during software 
evolution in which code changes make the method’s name and 
its implementation become inconsistent with one another.

*
Corresponding Author

Several approaches were proposed to detect the inconsis-
tency between the methods’ names and source code, and to 
suggest an alternative name if such inconsistency occurs. The 
approaches follow mainly two directions: information retrieval 
(IR) [18], [20] and machine learning (ML) [3], [4], [7], [28]. 
The idea of IR approaches is that similar methods should 
have similar names [20]. Thus, they search for the names of 
methods with similar bodies to suggest for a method with 
an inconsistent name. The IR approaches generally follow a 
searching strategy, thus, cannot recommend a new method 
name that is un-seen in the training data. The second di-
rection is machine learning (ML) [3], [4], [7], [28]. The 
ML approaches can overcome the key limitation of the IR 
direction due to its capability of generating a new name. While 
code2vec [7] generates the method’s name based on the paths 
over the AST of its body, MNire [28] uses the sub-tokens in the 
program entities’ names. other approaches treat the method 
name suggestion problem as the extreme summarization [4] 
from the method’s body into a short text. Despite their 
successes, the state-of-the-art ML approaches have limitations 
in dealing with the methods having little content or the entities’ 
names that are irrelevant to the functionality.

In this paper, in addition to using the body and interface 
of the method under study, we also leverage a philosophy for 
this naming problem: “Show Me Your Friends, I ’ll Tell You 
Who You Are”. That is, to characterize an entity/person, in 
addition to using its/his/her own properties, one can rely on 
the interactions of that entity/person with the surrounding and 
neighboring entities/persons. For the method name suggestion, 
examining only the content of the current method might be 
insufficient. The surrounding and interacting methods of a 
method m under study could include the methods that are 
called within the body of m (callees), and the methods that 
are calling m (callers). The neighboring methods are the ones 
within the same class with m (siblings). The information from 
the enclosing class also provides features for such characteri-
zation of a method. The key features from the caller and callee 
methods, sibling methods, and the enclosing class are used in 
addition to the features from the internal body and interface 
of the method m to verify the consistency of the method with 
regard to its name, and to suggest a proper method name. 
Each of those sources constitutes a context that is helpful

978-1-6654-0296-5/21/$31.00 ©2021 IEEE 
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for method name consistency checking and recommendation. 
Some methods have little content, but with sufficient contexts 
and vice versa. Thus, all contexts are complementary to one 
another in name consistency checking and suggestion.

We develop DEEPNAME, a context-based approach for 
method name consistency checking and suggestion. For the 
method m under study, it extracts the features from four con-
texts: the internal context, the caller and callee contexts, sib-
ling context, and enclosing context. For name suggestion, only 
the callee methods are used because the callers of m might not 
be written yet (the current method does not have a name yet). 
We use the name features, specifically, the sequences of sub-
tokens from the program entities within each context, instead 
of AST or PDG. It is reported that to infer a method name, 
using sub-tokens yields better accuracy than using the AST 
and PDG of the method [28]. The insight is that the naturalness 
of names plays crucial role in method name inference, i.e., 
method name depends more on entities’ names than AST or 
PDG (with data/control flows) [28]. AST and PDG capture the 
structure and procedure of the task, while the method’s name 
is the summary of the task. De e p Na m e  uses an RNN-based 
encoder-decoder to combine all the sequences of sub-tokens in 
the contexts into a sequence of vectors for m. A convolution 
layer is used on the vector for m to classify the given name to 
be consistent or not. To suggest a name for the given method, 
we use our vocabulary to map all the generated vectors into 
the sub-tokens to compose the method name.

We also modify the operations of the aforementioned RNN- 
based encoder-decoder to integrate the copy mechanism [11] 
and the novel non-copy mechanism. A recent study on the 
methods’ names [28] has reported that the high percentage 
of the sub-tokens of a method name appears in a set of the 
sub-tokens from entities’ names in a method. Due to this, the 
copy mechanism helps emphasize on the possibility of copying 
certain sub-tokens from the contexts to the output, i.e, the 
suggested method name. The non-copy mechanism is designed 
to determine the possibility of a sub-token that must not be 
copied to follow the current sub-token in the currently gen-
erated method name. The non-copy mechanism complements 
to the copy one in the way that it pushes down the unlikely 
candidates (with the sub-tokens not following a certain token) 
in the resulting ranked list. Thus, the likely candidates are 
pushed up in the list, improving suggestion accuracy.

We conducted several experiments to evaluate DEEPNAME 

in method name consistency checking and in method name 
recommending on two large datasets used in prior works with 
+2M and +14M methods [28]. For inconsistency checking, 
DEEPNAME outperformed the state-of-the-art approaches in 
Liu et al. [20] and MNire [28] by relatively 13.3% and 2.1% in 
recall, 34.9% and 19.6% in precision, and 25.4% and 11.9% in 
F-score. For method name suggestion, DEEPNAME improves 
relatively over the state-of-the-art approaches in both recall 
(8.8%-46.1%) and precision (1.8%-30.5%). There are 44.3% 
of the cases suggested by DEEPNAME that exactly match with 
the correct method names in the oracle, and 4.7% of those 
cases (i.e., 2.1% of total cases) do not appear in training data.

1 private void declareGrouping(BoltDeclarer boltDeclarer,
Node parent, String streamId, GroupingInfo 
grouping) {

2 // the old inconsistent method name is declareStream
3 if (grouping == null) {
4 boltDeclarer.shuffleGrouping(parent.getComponentId(),

streamId);
5 } else {
6 grouping.declareGrouping(boltDeclarer, parent.get

ComponentId(), streamId, grouping.getFields());

7 }
8 }

Fig. 1: An Example of Inconsistent Method Name

This shows that DEEPNAME can learn to suggest the method 
names, rather than retrieving what have been stored. In total, 
there are 11.9% of the cases in which the names are not 
previously seen in the training data. The precision and recall of 
this set of generated names are 57.6% and 55.1% respectively. 
To assess usefulness, we made 50 pull requests (PRs) on the 
suggesting new names for the inconsistent methods as detected 
by DEEPNAME. Among them, 12 PRs were actually merged 
into the main branch, and 18 were approved for later merging. 
In total, there are 60% of the cases that team members agreed 
that our suggested names are more meaningful than the current 
names. This paper makes the following contributions:

A. Representation and Tool: A novel approach that uses 
both internal and interaction contexts for method name con-
sistency checking and suggestion.

B. Novel technique: In De e p Na m e , we modify an RNN- 
based encoder-decoder to integrate a newly developed mecha-
nism, called Non-copy mechanism, to help our model pushes 
correct candidates to the top, improving top-ranked accuracy.

C. Empirical Results: our empirical evaluation shows that
1) De e p Na m e  is useful and more accurate than the state-of- 
the-art approaches in real-world projects and in a live study;
2) all four contexts complement to one another and contribute 
much to high accuracy. our replication package is in [1].

II. Mo t i v a t i n g  Ex a m p l e s

A. Examples
Figure 1 shows an example in Apache Storm project having 

the method declareGrouping with an inconsistent name. It is 
used to declare a group information for a stream. In an earlier 
version, the method was given the name declareStream, which 
was deemed to be confusing and inaccurately reflecting the 
functionality of this method. Therefore, in a later version, a 
developer performed refactorings to rename the method into 
declareGrouping and at the same time performed code partition.

This example shows a common case in which during the 
course of software development, the name of a method has 
become confusing and inconsistent with its functionality. Thus, 
an automated tool to detect inconsistent method names is 
helpful for developers to avoid confusing and mistakes.

When the method name is identified as inconsistent, it is 
also useful to have a tool to recommend a new name for the 
method. There are several factors that a tool can leverage to
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1 private Dimension calculateFlowLayout(boolean
bDoChilds){

2 ...
3 if (getParent()!=null && getParent()... JViewport) {
4 JViewport viewport = (JViewport) getParent();
5 maxWidth = viewport.getExtentSize().width;
6 } else if (getParent() != null){
7 maxWidth = getParent().getWidth();
8 } else {
9 maxWidth = getWidth();

10 }
11 ...
12 Dimension d = m.getPreferredSize();
13 ...
14 }
15

16 public Dimension | XXXXXXXXXXXXXXXX]() {

17 // The consistent method name is getPreferredSize
18 return calculateFlowLayout(false);
19 }

Fig. 2: An Example of Method Name Suggestion

suggest a new name for the method. First, a tool can rely 
on the body (i.e., the content) of the method to suggest its 
name. Second, the types and names of the arguments and 
return type of the method could also be used to predict the 
method’s name. The first and second factors are referred to as 
the internal content and the interface of the method under 
study. These two factors represent the only two key sources 
of information that the state-of-the-art approaches have been 
using for method name checking/suggestion. Liu et al. [20] use 
clone detection on the methods’ bodies to search for similar 
methods to suggest similar names. Alon et al. [7] also rely 
on the method’s content, however, explore code structures by 
using embeddings built from the paths over the abstract syntax 
tree (AST) of the method under study. Allamanis et al. [3], [4] 
and Nguyen et al. [28] also make use of the method’s body, 
method interface, and class name, however, break down the 
names of program entities into sub-tokens, and then use them 
to suggest the method name via neural network models [4], 
[28] or a clustering algorithm in the vector space [3].

Despite their successes, the state-of-the-art approaches do 
not work for the methods with little contents in their bodies. 
The method at line 16 in Fig. 2 in Tina POS project is named 
getPreferredSize. The method contains a single call to calculate- 

FlowLayout. Assume that one wants to use an existing name 
suggestion tool for the body of this method. However, the 
existing approaches relying on the method’s body or interface 
do not work because 1) none of the tokens of the correct name 
(getPreferredSize) appears there; 2) the code structure in the 
body does not help in predicting the method’s name. our tool 
suggests the correct name getPreferredSize, while MNire [28] 
uses the body to suggest the name getFlow. Thus, simply using 
the method’s body and interface is not sufficient.

B. Key Ideas
1) Show Me Your Friends, I’ll Tell You Who You 

Are: In addition to the method’s body and interface, we 
characterize a method by the surrounding methods that interact 
with the method under study. In this problem, the surrounding

and neighboring methods of a method m under study could 
include the methods that are called within the body of m 
(let us call them callees), the methods that are calling m 
(callers), the methods within the same class with m (siblings), 
and the program elements declared in the enclosing class of 
m. For method name consistency checking, in addition to 
the method’s body and interface, we could use all of those 
neighboring methods. For name suggestion, we could use 
callees and siblings since the callers of m might not be written 
yet at the time that the current method m is being edited.

In this example, while the content of m is short, the 
callee context, i.e., the body of the method calculateFlowLayout, 
contains sufficient information for name suggestion. In Fig. 2, 
examining the body of the callee method calculateFlowLayout, 
we can see that the sub-tokens of the consistent method name 
getPreferredSize appear in the names of the program entities 
in the callee. First, the sub-token get appears at lines 3-7, 9, 
and 12. Second, the sub-token Preferred appears at line 12. 
Third, the sub-token Size appears at line 5 and line 12. For 
consistency checking, callers and sibling methods can be 
used since they might be available. In general, the contexts 
complement to one another and to the internal content of 
the method, contributing to name suggestion. With the nature 
of source code, the case of little internal content and little 
contexts of a method is rare.

2) Representation Learning from Multiple Contexts: 
our model learns the representation to integrate names of vari-
ables, fields, method calls from multiple contexts. In addition 
to the method’s body and interface (we call it internal context), 
we also consider the interaction context, which includes all 
the methods interacting with the current method m, i.e., caller 
methods (if available) and callee methods. In Fig. 1, the two 
sub-tokens declare and Grouping in the consistent method name 
declareGrouping can be found at line 4 and line 6. We also use 
the sibling methods in the same class (sibling context) because 
they provide the tasks with the same theme.

Different contexts might have the sequences of sub-tokens 
with different lengths and nature. For example, in some cases, 
those sequences for callers/callees might positively contribute 
or negatively impact in deriving the method name. To help our 
model learn the importance of different contexts in different 
situations, we use a learning scheme for the weights of the 
contexts. In Fig. 2, we collect the internal context including 
the body at line 18 and the method return type Dimension at line 
16 as one type of context. We collect the name of the method 
calculateFlowLayout. Also, we collect the body and interface of 
the method calculateFlowLayout as the interaction context.

3) Sub-token Copy and Non-copy Mechanisms: It is 
reported that the high percentage of sub-tokens of the method 
names can be found in the set of the sub-tokens of the program 
entities in the context. Thus, we leverage this by using 
a copy mechanism for Recurrent Neural Network (RNN). This 
emphasizes on the likelihood of directly copying a sub-token 
from the input into the output position following a sub-token.

We also design a Non-copy mechanism that complements 
to the copy one. As copying at a sub-token position, the non-
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copy mechanism estimates the likelihood score that a certain 
sub-token s must not be copied to follow the current sub-
token c. A higher score implies that the occurrence probability 
of the sequence consisting of c following s is lower. Thus, 
it helps our model push lower in the resulting ranked list 
the incorrect candidates with those sub-tokens that must not 
follow certain ones. The correct candidates thus are pushed 
higher in the list, improving top-ranked accuracy (Table 5). For 
example, as deriving the sub-token at the second position in the 
method name, Non-copy pushes the candidates declareSchool or 
declareStudent lower in the list since School and Student have 
never been seen to follow declare in the training set. Thus, the 
correct option declareGrouping will be ranked higher.

Importantly, instead of directly using RNN encoder-decoder, 
we modify its operations to integrate our newly developed 
Non-copy mechanism with the Copy mechanism to help better 
predict the method name. The Copy and Non-copy mechanisms 
complement each other. Assume that the currently predicted 
name has two sub-tokens: A B. Copy mechanism suggests 
Ci, C2, ..., Cn (from the input) to likely follow A B. That is, 
Copy mechanism suggests C1 is likely to be copied, and Cn 
is less. However, Non-copy mechanism can suggest that C2 
(from the input) must not follow B because in training, it has 
never seen B C2. Thus, with only Copy mechanism, C2 is 
ranked 2nd, however, with both, we lower the ranking of C2.

III. Co n c e p t s  a n d  Ap p r o a c h  Ov e r v i e w

Definition 1 (Caller and Callee Methods). A caller method 
(caller for short) is a method calling the current method under 
study for consistency checking or name suggestion. A callee 
method (callee for short) is a method called within the body 
of the current method.

Definition 2 (Contexts). We consider four types of context:
1. Internal Context: The internal context for the current 

method contains the content in the body, types and names of 
the arguments in the interface, and the method’s return type.

2. Interaction Context: The interaction context for the 
current method includes 1) the names of the callers of the 
current method, 2) the contents of the callers (i.e., bodies, 
interfaces, return types), 3) the names of the callees, and 4) 
the contents of the callees (bodies, interfaces, return types).

3. Sibling Context: The sibling context for the current 
method m includes 1) the names of the methods in the 
same class with m , and 2) the contents of sibling methods 
(including the bodies, interfaces, and return types).

4. Enclosing Context: The enclosing context for the current 
method includes 1) the name of the enclosing class of the cur-
rent method and 2) the names of the program entities, method 
calls, field accesses, variables, and constants in the class.

Figure 3 shows DEEPNAME’s overview. It is aimed to help 
in two usage scenarios. First, the project is in the development 
process and the source code of the current method under con-
sideration and the source code of the callers, callees, siblings, 
and the enclosing class are available. De e p Na m e  can be used 
to determine the consistency of its name, and then it is used

Project

Fig. 3: Overview of DEEPNAME’s Architecture

to suggest an alternative name if the current name is deemed 
inconsistent. In the second scenario, the source code of the 
current method is written, however, its caller methods are not 
available since its name is not there yet. De e p Na m e  can be 
used to suggest a proper name for that method in this scenario.

There are four main steps in De e p Na m e :
1. Context Building. We collect internal context, interaction 

context, sibling context, and enclosing context to build context 
features. Specifically, for each type of context, we extract the 
names of the program entities appearing in the context. We use 
the CamelCase and Hungarian convention to break each name 
into a sequence of sub-tokens. For example, calculateFlowLayout 

is broken into calculate, Flow, Layout. We use the sequence of 
all the sub-tokens of the program entities’ names in the same 
order in the source code as the feature for that context. The ra-
tionale of using the sequence of sub-tokens as feature (instead 
of PDG/AST) is the naturalness of names [28]: developers do 
not give random names; they use names of program entities or 
method calls/fields relevant to the task of the current method.

2. Context Representation Learning. After extracting as 
features the sequences of sub-tokens for the contexts, we need 
to convert those sequences into vector representations for the 
models in the later steps. We use a word embedding model to 
convert the sequences of sub-tokens into the vectors. We put 
the vectors for all the sub-tokens in the order of the appear-
ances of those sub-tokens in the source code. As the result, 
for each context, we have a sequence of representation vectors 
corresponding to the sub-token sequence of that context.

3. Context-based Method Representation Learning. 
De e p Na m e  relies on all four contexts (internal, interaction, 
sibling, enclosing). Thus, we need to produce a representation 
for method m with the encoding of all contexts. From the 
previous step, for a context, we have a sequence of represen-
tation vectors. At this step, we use an encoder to learn the 
encoding of the features for a context. We then use a decoder 
to combine the encoded information for all the contexts into a 
representation for m, which has the integration of all contexts.

4. Consistency Checking and Method Name Suggestion. 
At the last step, De e p Na m e  has two separate models for 
two tasks. For consistency checking, it takes as the input the 
representation of the method m obtained from the previous 
step with the existing method name to be checked, and feeds to 
a two-channel CNN-based model [39] acting as a classifier to 
classify the method name to be consistent or not. For method 
name suggestion, each vector in the sequence of method 
representation vectors is a sub-token representation vector. We 
use our vocabulary to roll back all the vectors into the sub-
tokens and put them together to generate the method name.
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P("Size") = P1 + P2 + P3IV. Co n t e x t  Re p r e s e n t a t i o n  Le a r n i n g

A. Context Building
Our first step is to build the contexts from source code. For 

the internal context, sibling context, and enclosing context, 
we directly extract the names from the program entities, the 
return type, and the types in the interface. The names are 
broken into sub-tokens, which are collected into the sequence 
in the same appearance order in source code. The sequences 
of those sub-tokens represent the contexts. For example, for 
the method in Fig. 2 (line 16), the internal context is modeled 
by the sequence of sub-tokens: calculate flow layout dimension. 
The internal context also includes the sub-tokens in the return 
type, the types and names of the parameters of the method. 
The trivial (sub)tokens with a single character are removed.

For the interaction context, we build a call graph using 
Soot [33]. We then identify the callers and callees for the 
current method under study. The sequences of sub-tokens are 
built in the same manner as in the previous contexts to form the 
feature for the interaction context. For consistency checking, 
both callers and callees are considered. However, for method 
name suggestion, we consider only the callee methods if the 
caller methods do not exist yet. In Fig. 2, the callee part of the 
interaction context includes the sub-tokens built from parsing 
the method calculateFlowLayout:

get parent ... view port ... max width dimension get prefer size 

boolean dimension

Other callees are processed in the same manner. All the 
sequences of sub-tokens for all contexts are used as input in 
the next step. We denote those sequences as context features.

B. Context Representation Learning
To convert the sequences of sub-tokens into vectors, we 

consider all the sequences of sub-tokens for all the contexts as 
the sentences of words. We use GloVe [29], a word embedding 
technique, to produce the vectors for the collected sub-tokens. 
We use GloVe, instead of Word2Vec, due to its capability of 
learning to represent the words from the aggregated global 
word-word co-occurrence statistics, which captures the rela-
tionships between neighboring sub-tokens.

To build the vector representation for each context, we 
replace the sub-tokens in a sequence for the context feature 
with the corresponding GloVe vectors for the sub-tokens. We 
maintain the same order as the appearance order in the source 
code. For example, for a context feature sequence Fi , we have 
a sequence of vectors VFi = [v1, v2, ..., vn], in which vi is
a GloVe vector for a sub-token in the sequence. Because the 
sequences of vectors might have different lengths, we perform 
zero padding by filling the zero vectors for the sequences 
whose lengths are less than the maximum length. This makes 
the sequences of vectors have the same length.

V. Co n t e x t -Ba s e d  Me t h o d  Re p r e s e n t a t i o n

From the previous step, a context is represented as a se-
quence of vectors in which each vector represents a sub-token. 
The goal of this step (Fig. 4) is to produce a representation 
for the given method that integrates all of its contexts.

In terna l C on tex t In te rac tio n  C o n tex t

Fig. 4: Context-based Method Representation Learning

A. Context Feature Encoding

We first use a RNN-based seq2seq encoder to encode the 
sets of vectors for all contexts from the previous step. For 
each context, we encode it with a Gate Recurrent Unit (GRU). 
We use multiple GRUs because different contexts might have 
different structures and types of information. Multiple GRUs 
also help reduce the cross influence between different contexts.

The input for each GRU is the sequence VFi of n vectors 
representing a context. Each vector represents a sub-token in 
the names of the program entities in the context. For example, 
in Fig. 4, one GRU is used for the interaction context including 
the sub-tokens in the name, body, and interface of the callee 
method: Calculate Flow Layout .... Another GRU is used for 
the internal context including the body/interface of the current 
method: Dimension Calculate Flow ... For each time step t, we 
input one vector Vt in these n vectors and we get one hidden 
state vector ht as the output for this time step. By collecting 
all outputs for each time step, we have a list of hidden state 
vectors H  = [h1,..., hn], which is the output of GRUi.

Mathematically, the input sequence VFi = [v1, v2,..., vn] is 
learned and converted into a hidden vector H i by the encoder. 
The decoder is used to transfer the representation hidden 
vector Hi back to the target sequence Y  = [y1, y2,..., ym].

ht = f  (vt, h t-1) (1)

h'x t = g (yt-1, ht-1 ,H i) (2)

p(yt|y1,...., yt -  1, Vf ) = s(yt-1 ,h t ,H ) (3)

Formula 1 is for encoder RNN. ht is the hidden state in time 
step t; f  represents the RNN dynamic function. Formula 2 is 
for the decoder. hft is the hidden state for the decoder at time 
step t; g represents the RNN dynamic function. Formula 3 is 
for prediction: s is the possibility calculation function.

By putting together all the outputs Hi s of all GRUs, we 
obtain all the hidden states vectors H  = [H1, H2,..., Hi]. This 
is the output of the encoder and used in the attention layer.

Because not all the sub-tokens in a context are equally 
important, we aim to put emphasis on certain sub-tokens. Such 
emphasis is learned via an attention mechanism. Technically, 
the attention layer uses a changing context Ct instead of one
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hidden vector Hi . Ct is calculated as the weighted sum of the 
encoder’s hidden states:

n
Ct ^   ̂a t,ihi

i=1

r(h't- 1,hi)
a t,i — E n

i! =i ' r(ht-1,hi' )
e

(4)

where r  is the function used to represent the strength for 
attention, approximated by a multi-layer neural network.

B. C ontext Feature D ecoding

This is our new component (Fig. 4) in which we modify 
the operation of the GRUs at the output layer of the decoder 
to integrate our newly developed Non-copy mechanism. It 
operates in connection with the attention layer.

First, at each time step t  for a GRU, the previous hidden 
state h't-1 is used as the input for the attention layer and the 
output of the attention layer will be used as the input of the 
GRU at the time step t. In Fig. 4, the vector for the sub-token 
Preferred obtained from the output of the attention layer at the 
time step 2 is used as the input of the GRU at time step 3. This 
emphasizes on the important sub-tokens while the decoding is 
performed at each time step.

Next, at the output layer of the decoder, we also integrate the 
operation of two mechanisms: CopyNet [11] and Non-copy.

1) CopyNet: CopyNet [11] is the copy mechanism with the 
RNN seq2seq model and attention mechanism. It calculates the 
possibilities of copying the input sub-tokens to the output. It 
has two modes: generation-mode (denoted by GEN) and copy-
mode (CPY) for prediction. The attention mechanism with 
RNN uses one function. The state update for CopyNet consid-
ers not only the word embedding, but also the corresponding 
location-specific hidden state in the set of RNN encoder’s 
hidden states H  =  [h1, h2, ..., ht].

p(yt|ht, yt-1, Ct, H ) — p(yt, G E N |h't , y t-i, Ct, H ) + 

p(yt,C PY  |fc i,y t-i,C t,H  )
(5)

p(yt,G EN  |.)

p(yt,C PY  |.)

_LeuG E N  (yt ) Z e yt € dicali 
0 yt € dicali n dici.
Z eUGEN (UNK) yt € dicali U dici. 1

1  V  • eUCPY (vj ) y p dic-Z Eio-.vj =yt e yt € dici
0 otherwise

(6)

(7)
uGEN and are the score functions for the generation-

mode and copy-mode; Z is the normalized term used by two 
modes; and dicall and dicin are the overall dictionary and the 
dictionary for the input only.

2) Non-copy mechanism: We aim to determine the pos-
sibility of a sub-token that must not follow the current sub-
token. For instance, if the sub-token get at the (m-1) position 
is a known one, and the sub-token Preferred follows it in the 
training dataset, we calculate the possibility that Preferred will 
not follow the sub-token get. Such calculation is based on our 
statistical analysis on the word distribution on the vocabulary.

Mathematically, for the method name ym-1 at the position 
(m-1), we calculate the possibility that a certain sub-token

will not be the next one at the position m. That possibility 
score, denoted by p(ym, NON|ym-1), is computed as

{
 c o u n i ( y m l v m - l )  7-

1 c o u n t y ym, ym-1 £ d l , c a l l

0 m_ ym-1 /  d i c a n

1 o thers
(8)

Where count(ym|ym-1) is the occurrence count for the sub-
token m that follows the sub-token at (m-1) in the training 
dataset, and county . is the occurrence count for the sub-
token at (m-1). This formula is to calculate the word distribu-
tion possibility, which is between [0,1]. The larger value means 
that this sub-token has higher possibility of not following 
the previous sub-token at (m-1). Moreover, because we have 
multiple context features as input, which can pass to the copy 
mode, we add all the possibilities together as the total copy-
mode possibilities with different weights. With this, the copy-
mode Formula 7 has now become: 

i

p ( y t ,N E W  |.) =  ^  W ipi (y t,C P Y \.)+ W N o Np (y t,N O N  |yt_ i )  (9) 
i= l

Where Wi is a trainable weight for different types of context 
features, W NOn  is a trainable weight and always less than 
zero, and I  is the total number of types of context features.

3) M ethod R epresentation D ecoding: We have modified 
the decoder part (see our new component in Fig. 4) to integrate 
the copy and non-copy mechanisms. In the traditional GRU 
for an RNN decoder, the output layer is computed according 
to Formula 2. We still keep that computation as one of the 
three factors to determine the output of the decoder, which is 
shown as Generation Mode in Fig. 2. For example, for the sub-
token Size after Preferred, that computation is as P(Size,GEN). 
In addition, we also integrate the CopyNet mechanism to 
determine the possibility of a sub-token based on the sub-token 
copying as in Formula 7 in Section V-B1: P(Size, CPY). For 
Non-copy mechanism, we integrate with the copy mechanism 
from Formula 8. Thus, the new formula for the combination 
of copy and non-copy mechanisms is Formula 9.

The possibility score of a sub-token as the output of the 
decoder at a time step t  is the summation of the three factors. 
Thus, the possibility score of a sub-token, e.g., w=Size, is 
calculated as P(w) = P1(w,GEN) + P2(w,CPY) + P3(w,NON). We 
will pick the representation vector for the sub-token with the 
highest possibility score in the current time step t  as the output 
of the decoder at that time step.

Finally, after having the prediction vector Vt for all time 
steps, we put them together to obtain a set of vectors in the 
original order as the set of vectors Vcur for the current method.

VI. Co n s i s t e n c y  Ch e c k i n g  a n d  Na m e  Su g g e s t i o n  

A. Consistency Checking

To check whether the method name is (in)consistent, we 
use a two-channel CNN model [39] as a classifier on the set 
of vectors Vcur, which can be viewed as a matrix Mcur. To 
build the second channel, we apply the same word embedding 
step to represent the name of the current method as the set
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o f vectors Vexist. We consider that set as the m atrix Mexist 
and combine w ith  the m atrix Mcur to fo rm  the two-channel 

representation m atrix Mclassification =  [Mcur, Mexist], which 
is fed to the two-channel C N N  model. The output is produced 

by the softmax function. The value is between [0-1] in  which 

1 represents consistency and 0 represents inconsistency.

B. M ethod N am e Suggestion

We consider the sequence Vcur produced by the previous 

step is the vector representations fo r the method name under 

study. Specifically, we consider each vector Vk as the repre

sentation fo r a sub-token in  the suggested name o f the method. 

From  the dictionary dicall fo r a ll the vocabulary in the corpus, 

we find  the closest vector Vsk to the vector Vk and use the 

sub-token sk corresponding to Vsk as the suggested sub-token 

fo r Vk. F inally, we obtain the sequence o f the sub-tokens fo r 

a ll Vks. The resulting sequence is considered as the suggested 

name fo r the method under study. The order o f the sub-tokens 

is the same as the order o f the vectors Vk s in  the sequence o f 

the representation vectors fo r the method Vcur.

V I I .  E m p i r i c a l  E v a l u a t i o n

A. Research Questions
RQ1. Method Name Consistency Checking Comparative 
Study. How w e ll does D e e p N a m e  perform  in  comparison w ith  

the state-of-the-art method consistency checking approaches? 

RQ2. Method Name Suggestion Comparative Study. How does 

D e e p N a m e  perform  in  comparison w ith  the state-of-the-art 

method name suggestion approaches?

RQ3. Impact Analysis of Different Contexts and Weighting 
Scheme. How do d istinct types o f contexts and the ir different 

weights affect the overall performance o f D e e p N a m e ?

RQ4. Impact Analysis of Copy and Non-copy Mechanisms. 
How  do copy and non-copy mechanisms affect accuracy? 

RQ5. Method Name Suggestion Accuracy Analysis. How does 

D e e p N a m e  perform  on the un-seen method names and the 

methods in  various sizes?

RQ6. Live Study. How  does D e e p N a m e  perform  on the 

currently active rea l-w orld  projects?

B. Experimental Methodology
1) D atasets: Corpus for Consistency Checking. For com

parison, we used the same dataset from  L iu  et al. [20], which 

was also used in  another baseline approach M N ire  [28]. The 

tra in ing dataset (Table I) from  that corpus was collected from  

the highly-rated, open-source projects from  fou r communities, 

namely Apache, Spring, Hibernate, and Google. I t  contains 

the latest versions o f 430 Java projects w ith  +100 commits. 

In  total, i t  has 2,119,573 methods, which were considered as 

consistent names because the methods whose names are stable 

fo r a long tim e were selected. For the testing dataset, L iu  et 
al. [20] m ined the methods whose names were m odified by 

developers fo r the reasons o f misleading names. F inally, in  

those projects, there are 1,402 methods w ith  inconsistent 

names. They random ly chose another 1,402 methods w ith  

consistent names to fo rm  a test dataset w ith  2,804 methods.

TABLE I: Corpus for Method Name Consistency Checking

Testing data Training data
#Methods 2,804 2,119,573
#Files - 251,362
#Projects - 430
#Unique method names - 540,547

T A B LE  II:  Corpus fo r M ethod Name Suggestion

Testing data Training data Total
#Project 1,022 9,200 10,222
#File 51,631 1,756,282 1,807,913
#Methods 466,800 13,992,028 14,458,828

Corpus for Method Name Suggestion. For comparison, 

we used the same dataset as in  code2vec [7] and M N ire  [28], 

w ith  10,222 top-ranked Java projects from  G itHub. I t  has 

14,458,828 methods and 1,807,913 unique files. We sp lit the 

corpus based on the number o f projects, instead o f files. The 

project-based setting reflects better the rea l-w orld  usage o f 

D e e p N a m e  where i t  is trained on the set o f existing projects 

and used to check fo r a new project. The overloading/overrid- 

ing methods and generated method names were removed.

2) Em pirical Procedure: Let us present our procedure. 

RQ1. Method Name Consistency Checking. We chose the 

fo llow ing  baselines: 1) Liu et al. [20], an IR  approach to search 

fo r s im ilar methods to suggest sim ilar names, 2) MNire [28], 

an M L  approach using seq2seq encoder-decoder on the sub

token sequences in  the method’s body and interface. We 

trained each model under study w ith  the same tra in ing dataset 

and tested i t  w ith  the same testing dataset.

For hyper-parameter tuning fo r a model, we used A u to M L  

in  N N I [22] to autom atically tune the parameters. We selected 

the parameter set that helps a model obtain the highest F-score 

and accuracy. For name consistency checking, 2,804 methods 

are fo r testing; 90% (1,907,716 methods) o f the tra in ing data 

are fo r tra in ing; and the remaining 10% are fo r tuning.

RQ2. Method Name Suggestion. We compared w ith  the 

fo llow ing  baseline approaches: 1) MNire [28], 2) code2vec [7] 

3) code2seq [5], and 4) path-based representation [6]. For 

comparison, using the same procedure as M N ire  [28], we 

random ly sp lit the data by 80% fo r train ing, 10% fo r parameter 

tuning, and 10% fo r testing.

RQ3-RQ4. Impact Analysis on various Components. We

varied our model (e.g., adding each context), and measured 

accuracy. We used the parameter settings as in  RQ1-RQ2. 

RQ5. Accuracy Analysis on Method Name Suggestion. We

measure the accuracy on un-seen method names and on the 

methods w ith  d ifferent lengths in  the same setting as RQ2. 

RQ6. Live Study. We use our too l to check the method names 

in  the active G itH ub projects, make p u ll requests to rename 

inconsistent ones, and evaluate the acceptance responses.

3) Evaluation M etrics: For method name consistency 

checking, we compared the predicted results against the 

ground tru th  on consistent and inconsistent method names 

provided as part o f the name consistency checking corpus [20]

580

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: RQ1. Method Consistency Checking Comparison 
(C: Consistent Methods; IC: Inconsistent Methods)

Liu e t  al. [20] MNire [28] De e pNa me
Precision 46.5% 54.1% 64.8%

C Recall 68.3% 80.6% 86.4%
F-score 55.3% 64.7% 74.1%

Precision 53.6% 60.5% 72.3%
IC Recall 81.3% 90.2% 92.1%

F-score 64.6% 72.4% 81.0%
Accuracy 56.8% 65.7% 75.8%

(Table I). For name suggestion, we compared the predicted 
names by a model against the good method names in the name 
suggestion corpus, which was part of code2vec [7] (Table II).

For consistency checking, we used the same evaluation 
metrics as in Liu et al. [20] and MNire [28] including Precision, 
Recall, and F-score, for both inconsistency (JC) and consistency 
(C) classes. For JC  class, Precision =

r. For C class, Precision =

|T P |
|T P |+|FP | 

|TN |
|TN | + |FN |

, and Recall =

|TP| + |FN| . i o i  C class ' ' ecision = |TN | + |f n | , and Recall =

l™F p | , in  which T P  is true positive (JC  is classified as 
IC ), F N  is false negative (JC  is classified as C ), T N  is true 

negative (C is classified as C ), and F P  is false positive (C 
is classified as JC ). For both JC  and C , F-score is defined as 
2xPrectstonxRecaii. For the overall in  both JC  and C , AccuracyPrectston+Recall * 1

|TP | + |TN | =  |T P  | +  |TN  |.is defined as T p |+|FP| + |TN| + |FN|
For method name suggestion, we used the same metrics as in 

code2vec [7] and MNire [28]: Precision, Recall, and F-score over 
case-insensitive sub-tokens. That is, for the pair of an expected 
method name e and its recommended name r, precision and 
recall are computed as: Precision(e, r)= | ^

\subtoken(r')nsubtoken(e')\ 
\subtoken(e) |

| subtoken(r) |
subtofcen(n) returnsand Recall(e, r)=

the sub-tokens in the name n. Precision, Recall, and F-score 

of the set of the suggested names are defined as the average 
values in all cases. In all experiments, we also counted the 
exact-matched names (ExMatch) and the case-sensitive names.

C. Experimental Results
1) RQ1. Method Name Consistency Checking: As seen 

in Table III, for inconsistent method name detection (IC),
De e p Na m e  has a relative improvement of (35.0%, 13.3%, 
25.5%) and (19.6%, 2.1%, 11.9%) on (Precision, Recall, and 
F-score) in comparison with Liu et al. [20] and MNire [28], 
respectively. We found that for Liu et al. [20], in many cases, 
the inconsistent methods might not be classified as inconsistent 
(lower Recall), and the predicted inconsistent methods might 
be incorrect (lower Precision). The main reason is that the 
principle of “methods with similar bodies have similar names 
and vice versa” does not hold in many cases. For MNire, 
several inconsistent methods are not classified as inconsistent 
(lower recall) since the bodies use similar sub-tokens, but 
the methods do not have the same tasks. For those cases, 
De e p Na m e  uses the caller and callee methods to complement 
for the internal context in the characterization of a method, and 
is able to detect the inconsistencies since it can detect methods 
with the same usages but with different names.

TABLE IV: RQ2. Method Name Suggestion Comparison

code2vec[7 Path-Rep [6] code2seq [5 MNire [28] De e p Na m e

ExMatch 21.7% 23.3% 32.4% 38.9% 443%
Precision
Recall
F-score

60.2%
52.4%
56.0%

56.4%
49.2%
52.6%

72.3%
66.1%
69.1%

67.4%
63.1%
65.2%

73.6%
71.9%
72.7%

For consistent method name detection (C), De e p Na m e  

has a relative improvement of (39.5%, 26.5%, 33.9%) and 
(19.8%, 7.1%, 14.4%) on Precision, Recall, and F-score in 
comparison with Liu et al. [20] and MNire [28], respectively.

Regarding accuracy as considering both consistent and 
inconsistent name detection, De e p Na m e  relatively improves 
33.6% and 15.4% compared to Liu et al. [20] and MNire [28], 
respectively. We found several consistent methods with similar 
bodies, however with different names. For example, the meth-
ods on InputStream and OutputStream, but have the same body 
of return stream;. Both Liu et al. [20] and MNire [28] relies on 
the body, thus, cannot work in those cases, while De e p Na m e  

distinguishes them via callers/callees and siblings. Moreover, 
there are methods with the same bodies but names are different 
due to different enclosing classes intended for different pur-
poses, e.g., process.start(), process.stop(). The baselines detected 
them as inconsistent. De e p Na m e  uses the callers/callees to 
recognize its usage, thus, correctly detecting it as consistent.

2) RQ2. Method Name Suggestion: As seen in Table IV, 
44.3% of the cases suggested by De e p Na m e  at top-1 posi-
tions are exactly matched with the correct method names given 
by developers. It has relative improvements from 13.9%- 
104.1% compared with the baselines. It also achieves higher 
F-score than all the baselines. Specifically, it has relative 
improvements of 1.8%-30.5% in Precision, 8.8%-46.1% in 
Recall, and 5.2%-38.2% in F-score over the baselines.

With regard to ExMatch, code2vec and path-based Rep have 
lower values than De e p Na m e  as they mainly encode path- 
based contexts with tokens, which have shown as less repeti-
tive than the sub-tokens [28]. code2seq encodes the path-based 
contexts as well as the sub-tokens. However, it failed to capture 
the order of sub-tokens for the exact name recommendation. 
code2seq often recommends the relevant sub-tokens, but not in 
the right order. De e p Na m e  improves code2seq by 37%. Also 
MNire does not consider the callers/callees and siblings, thus 
it cannot identify more sub-tokens than De e p Na m e .

With regard to Recall, we found that code2vec and path-based 

Rep have lower recall than De e p Na m e  because the base-
lines mainly encode path-based contexts within one method. 
code2seq requires two methods with similar sub-tokens and/or 
path contexts. MNire requires two methods with similar se-
quences of sub-tokens to have similar names. De e p Na m e  

uses the bodies/interfaces as well as the interaction, sibling, 
and enclosing class contexts, thus, is more flexible.

With regard to Precision, two methods can be realized in 
the same structure, but are named differently since they are in 
different classes and are used differently. Because two methods 
have the same/similar AST path contexts, code2vec and Path- 

based Rep suggest the same name, thus, they have lower preci-
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TABLE V: RQ3. Context A nalysis on Consistency Checking

Internal
(A)

A+Enclosing
(B)

B+Siblings
(C)

C+Interaction
(De e p Na m e )

Precision 53.1% 54.4% 56.5% 64.8%
C Recall 79.3% 80.9% 81.9% 86.4%

F-score 63.6% 65.1% 66.9% 74.1%
Precision 59.2% 61.1% 63.4% 72.3%

IC Recall 88.4% 89.1% 89.3% 92.1%
F-score 70.9% 72.5% 74.2% 81.0%

Accuracy 64.2% 65.3% 67.3% 75.8%

TABLE VI: RQ3. Context A nalysis on N am e Suggestion

Internal A+Enclosing B+Siblings C+Interaction
(A) (B) (C) (De e p Na m e )

ExMatch 38.3% 38.8% 39.7% 44.3%
Precision 65.7% 66.3% 68.5% 73.6%

Recall 62.4% 63.9% 65.7% 71.9%
F-score 64.0% 65.1% 67.1% 72.7%

sions. M N ire uses the enclosing class but does not consider the 

interaction and sibling contexts. Thus, in several such cases, 

M N ire suggests the sam e name, w hile D e e p N a m e  suggests 

the correct nam e due to the callers/callees and siblings.

3) RQ3. Impact Analysis of Different Contexts and 
Weights: A. Context Analysis. The base m odel in this 

experim ent uses only internal context (the m ethod body and 

interface). As seen in Table V, w hen adding the enclosing class 

o f the m ethod (A+enclosing), accuracy increases by 1.1% (1.7% 

relatively), as both F-scores for C and IC classes increase. C on-

sidering the sibling methods, accuracy additionally increases 

2.0% (3.1% relatively) as com paring the colum ns (B) and (C). 

Finally, with all the contexts, accuracy additionally increases 

8.5%, i.e., 12.6% relatively. Thus, all contexts contribute 

positively tow ard the overall accuracy.

W ith further analysis, w e have observed the following. 

First, the enclosing class provides the context related to the 

general them e o f the current method, e.g., InputStream versus 

OutputStream. W hile the m ethod bodies are the sam e (return 

stream;), D e e p N a m e  is able to derive the correct nam es 

getInputStream and getOutputStream by leveraging the enclosing 

context. Second, the sibling context provides the nam es o f the 

relevant m ethods to the current one. For example, in a class 

that provides m ouse handling for a canvas, the sibling methods 

onMouseUp and onMouseDown give useful sub-tokens to suggest 

the m ethod nam e onMouseOver. Finally, the interaction context 

helps suggest the nam es for the methods with little content 

in the bodies, e.g., in delegation methods. U nlike the existing 

approaches w ith only internal context, we leverage the interac-

tions, siblings, and enclosing contexts o f the m ethod as well as 

internal context (body/interface) to achieve highest accuracy.

We also perform ed another experim ent to leave one context 

out and com pare the accuracy with D e e p N a m e ’s accuracy 

in order to determ ine the im pact o f each context. W ithout the 

interaction context, accuracy and two F-scores reduce by 11.2%, 

8.5% and 9.7% , respectively. W ithout the sibling context, 

the perform ance decreases by 8.8%, 6.5%, and 7.9%  on

TABLE VII: RQ4. Copy/Non-Copy in Consistency Checking

Seq2seq Seq2seq
+Copy

Seq2seq+Copy+Non-copy
(=De e p Na m e )

Precision 64.7% 69.8% 72.3%
C Recall 89.5% 91.2% 92.1%

F-score 75.1% 79.1% 81.0%
Precision 57.3% 59.6% 64.8%

IC Recall 82.4% 83.1% 86.4%
F-score 67.6% 72.1% 74.1%

Accuracy 68.8% 73.5% 75.8%

TABLE VIII: RQ4. Copy/Non-Copy in N am e Suggestion

Seq2seq Seq2seq+Copy Seq2seq+Copy+Non-copy
(=De e p Na m e )

ExMatch 39.4% 42.6% 44.3%
precision 69.3% 72.2% 73.6%

Recall 68.5% 70.4% 71.9%
F-score 68.9% 71.3% 72.7%

accuracy and two F-scores, respectively. The enclosing context 

also positively contributes to high perform ance. In brief, the 

internal and interaction contexts contribute the most.

The contributions o f contexts are also confirm ed by the 

m ethod nam e suggestion results (Table VI). W hen adding 

the enclosing context to the internal one, F-score increases 

by 1.1%. W hen further adding the sibling context, F-score 

additionally increases by 2.0%. Finally, adding the interaction 

context, F-score additionally contributes 5.6%.

B. Impact of Weight Learning for Different Contexts. The
nature and the length of the sequences of sub-tokens in each 
context might contribute differently. To help our m odel learn 

the im portance o f each context, we use w eight learning with 

Wi in Form ula 9. We com pared our m odel with the one 

having equal weights. The result shows that with w eight learn-

ing, D e e p N a m e  im proves 5.13% in accuracy for consistency 

checking and 2.2% in F-score for nam e suggestion. Thus, our 

w eight learning for contexts positively contributes to accuracy.

4) RQ4. Impact Analysis of Copy and Non-Copy Mech-
anisms: In this experim ent, we rem oved from  our m odel both 

Copy and Non-Copy m echanism s and used it as a baseline. We 

then added each m echanism  one-by-one to the baseline. As 

seen in Tables V II-V III, Copy m echanism  helps im prove over 

the baseline m odel 6.8% relatively in accuracy for consistency 

checking, and 3.4% relatively in F-score in nam e suggestion.

The newly developed Non-Copy m echanism  helps addition-

ally im prove 3.1% relatively over seq2seq+Copy in consistency 

checking accuracy, and helps im prove 2.7% relatively in nam e 

suggestion. Thus, Non-copy com plem ents to Copy mechanism.

5) Illustration: Let us take an exam ple in our experim ent 

to illustrate the effectiveness o f each com ponent in D e e p -

N a m e . Fig. 5 shows the top-ranked results for the nam e o f the 

m ethod given in Fig. 6 w hose actual nam e is processFinallyStmt. 

We show the top-ranked resulting lists o f the nam e for 

several variations of D e e p N a m e  in w hich w e gradually added 

each com ponent/context to the previous model. The leftm ost 

colum n is the result o f the m odel using only internal context
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Fig. 5: Method Name Recommendation Results (Top-10 Ranked List) for Fig. 6

1 private static LiveCalc | XXXXXXXXXXX | (FinallyStmt s,

LiveSet onEntry) {
2 //Name: processFinallyStmt
3 return liveness(s.getBody(), onEntry);
4 }

Fig. 6: A Correctly Suggested Method Name

(body and interface). The next column is the result from a new 
variation with the addition of a new component. For example, 
the second column is the result from a model that considers 
both internal and enclosing contexts; the third one is from the 
model with internal, enclosing, and sibling contexts, etc.

Let us explain the resulting lists from all the variants and 
the impacts of contributing components. As seen, both the 
models Internal and Internal+Enclosing cannot suggest the correct 
name in the top-10 lists. The body and interface contain the 
sub-tokens Finally and Stmt, but do not contain the sub-token 
process. By adding the enclosing context can only help improve 
the ranking of the candidate method names that include sub-
token Finally and Stmt. However, by adding the sibling context, 
Internal+Enclosing+Siblings is able to rank the correct method 
name processFinallyStmt at the 8th position. The reason is that 
the enclosing class in this case has several sibling methods 
with the names starting with process, e.g., processOperation, 
processLabeledStmtWrapper, etc. Thus, Internal+Enclosing+Siblings 

is able to learn the sub-token process from the sibling methods, 
and ranks the correct name higher.

By adding the interaction context, Internal+Enclosing+Sibl- 

ings+Interaction can rank the correct name at the 6th position. 
The reason is that the body and interface of the callee method 
liveness contain the occurrences of process and stmts.

With the addition of the Copy mechanism, the new model 
Internal+Enclosing+Siblings+Interaction+Copy improves the rank-
ing of the correct name to the 4th position. The reason is that 
Copy mechanism can emphasize on the copying of the popular 
and important sub-tokens, e.g., process, liveness. As seen, the 
names with the sub-tokens process and liveness are ranked at 
the top 5 positions in the column corresponding to this model.

Finally, De e p Na m e , with the addition of Non-copy mech-
anism, is able to rank the correct name at the top position. 
The reason is that Non-copy can learn that the sub-token Set 
must not follow processFinally. Thus, processFinallySet is pushed 
down, and the sub-token Stmt following processFinally to pro-
duce the correct name processFinallyStmt is pushed to the top.

Fig. 7: Accuracy by different Methods’ Sizes in Test Set 

TABLE IX: RQ7. Pull Requests of Real-world Projects

Accept Agree Disagree No-reply Total
12 18 11 9 50

6) RQ5. Accuracy Analysis on Method Name Sugges-
tion: We study the results on the suggested method names 
that were not in the training data. There are +173K (11.9%) 
out of +1,445K generated method name that were un-seen 
during the training. The Precision, Recall, and F-score for this 
set are 57.6%, 55.1%, and 56.3%, respectively. Importantly, 
in 17.4% of these generated cases (i.e., 2.1% total cases), 
the generated names exactly match the expected names in the 
oracle. These numbers show that De e p Na m e  performs well 
for the un-seen method names and really learns to suggest 
natural names, rather than retrieving method names that have 
been stored in the training dataset.

Accuracy by the Sizes of Methods in Test Set. As seen 
in Fig. 7, De e p Na m e  works well on the methods with the 
regular sizes of 1-25 LOCs. Even with the longer methods 
(+25 LOCs), Precision and Recall decrease gracefully at 46.3% 
and 41.9%, respectively. This shows that predicting the name 
becomes harder for longer methods. Even so, in +8K cases of 
33K long methods with +25 LOCs, De e p Na m e  produced the 
exact-match names with the correct ones.

7) RQ6. Live Study: To evaluate the usefulness of our tool, 
we conducted a study on 100 randomly chosen, active Java 
projects in GitHub. We used De e p Na m e  trained as in RQ1 to 
detect inconsistent method names, then submitted pull requests 
(pRs) of method renaming suggested by the tool and assessed 
PR acceptance rates. Overall, it identified 3K out of 133K 
methods as inconsistent. To avoid much work for developers, 
we randomly selected and made only 50 pull requests.

As seen in Table IX, among 50 PRs, 12 cases were approved 
and merged by the development teams. Additionally, 18 PRs 
have been validated and approved by the team members. For 
those cases, the teams acknowledged that the current method
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names are misleading, and agreed w ith  the suggested names 

as provid ing more meaningful names. However, at the tim e o f 

w riting , the PRs have not been merged in to the main branch 

due to the additional requirements o f review ing or testing. In  

11 cases, the developers disagreed w ith  our suggested names. 

In  some cases, the suggested names do not conform  to coding 

conventions in  the project. Some cases involve template code. 

In  some cases, the names are o f the methods that override the 

external libraries. There are s till 9 cases that we d id  not get 

responses. In  brie f, in  30/50 cases, the developers confirmed 

that the names suggested by D e e p N a m e  are more m eaningful 

than the current names. This shows that D e e p N a m e  is useful 

in  rea l-world projects in  both detecting inconsistent method 

names and suggesting new names.

8) Threats to Validity: Our data has on ly  Java code. For 

code2vec [7], we used the same metrics fo r comparison (i.e., 

the accuracy fo r a set o f method names are the average o f those 

fo r a ll names). We did not have a statistical test in  comparison 

since they did not provide ind iv idua l resulting names. Running 

the ir too l requires a high-com putational machine. We could not 

run L iu  et al. [20 ]’ s name suggestion on our dataset despite our 

efforts try ing  and contacting the authors w ithou t responses.

9) Limitations: Despite the above successes, D e e p N a m e  

also has the aspects that need to be improved. As any other 

M L  approaches, i t  has the out-of-vocabulary issue. That is, it  

cannot generate a sub-token that has never been seen in  the 

tra in ing data. However, as shown in  the em pirical evaluation 

section, D e e p N a m e  is able to generate a new method name 

from  the sub-tokens that i t  has encountered in  the training 

dataset. Because D e e p N a m e  does not analyze the entire 

project, i t  does not perform  w e ll fo r the overriding methods, 

and the methods that override the A p Is  in  the external libraries. 

A  potential solution is to integrate our M L  direction w ith  

program  analysis to guide the process o f the method name 

generation. Moreover, D e e p N a m e  does not w ork w e ll fo r the 

method names w ith  one single sub-token, or the methods w ith  

long bodies or the long callers/callees.

V I I I .  R e l a t e d  W o r k

There are two categories o f approaches fo r method name 

inconsistency detection and suggestion. The first one is In fo r

m ation Retrieval (IR ). L iu  et al. [20] relies on the princip le  

that methods w ith  sim ilar bodies have sim ilar names. In  our 

experiment, we showed that such princ ip le  does not hold in 

many cases. Jiang et al. [18] searches fo r the methods having 

s im ilar return type and parameters, as w e ll as heuristics, to 

derive method names. The key advantage o f these IR-based 

approaches is that they are light-weighted and do not require 

high computational power. Their key disadvantage is that 

because searching in  the set o f already-existed names, they 

cannot generate a new name that were not in  the tra in ing data.

The second category is machine learning (M L ). M N ire  [28] 

explores the sub-tokens appearing in  the methods’  bodies and 

interfaces. A llam anis et al. [4] use a neural network w ith  

attention and convolution to summarize code in to  descriptive 

summaries. A llam anis et al [3] pro ject a ll the sub-tokens in

the entities’  names in  the method bodies in to  the same vector 

space and cluster them  to compose method name. M N ire  has 

been shown to outperform  code2vec [7], w h ich outperforms 

A llam anis et al. [4] and A llam anis et al [3]. Those ML-based 

approaches a ll re ly  on ly  on the method’ s body and interface.

There are several approaches fo r code embeddings. 

Code2vec [7] abstracts source code by the paths over the AST 

to produce vectors. Code2seq [5] generates a word sequence 

from  the structure o f source code. K e and Su [37]’ s approach 

builds the embeddings to capture structures and semantics o f 

a program. However, as shown in  M N ire  [28], using code 

structure, AST, PDG is too strict in  predicting method names.

There are several approaches to predict the names or types 
of program entities w ith in  the method bodies [30], [32], [34], 

[35]. W h ile  JSNeat [34] searches fo r names in  a large corpus 

to recover variable names in  m in ified code, JSNice [32] and 

JSNaughty [35] use CRF and machine translation. Natural

ize [2] learns and enforces a consistent naming conventions.

Several approaches use M L  to generate texts from  code [14], 

[16], [17], [21], [36] and vice versa [12], [13], [23], [31], 

or code m igration [24], [25], [26], [27]. Zheng et al. [38] 

uses AST structure fo r such statistical machine translation 

to produce comments. C O D E -N N  [17] uses LS T M  on code 

sequence to model the conditional distribution o f a summary to 

produce word by word. DeepCom [16] has a traversal on AST 

fo r flattening, and uses seq2seq to produce code summary. Wan 

et al. [36] use a deep reinforcement learning on A S T  and code 

sequence. There are several studies on name consistency and 

naming convention [8], [9], [15], [19].

IX .  C o n c l u s i o n

We introduce D e e p N a m e , a context-based deep learning 

approach fo r inconsistency checking and method name sug

gestion. The fo llow ing  key ideas enable our approach (1) 

characterizing a method by the surrounding methods that are 

interaction or siblings method fo r the method we are studying; 

(2) learning the representation fo r the method w ith  m ultip le  

contexts; (3) using sub-token copying and non-copying mech

anisms to help better predict the name. We conducted several 

experiments to evaluate D e e p N a m e .

O ur results showed high accuracy and usefulness o f D e e p 

N a m e  in  rea l-w orld  projects. For consistency checking, 

D e e p N a m e  improves the state-of-the-art approach by 2.1%, 

19.6%, and 11.9% rela tive ly in  recall, precision, and F-score, 

respectively. For name suggestion, D e e p N a m e  improves rela

tive ly  over the existing approaches in  precision (1.8% -30.5% ), 

recall (8.8% -46.1% ), and F-score (5.2% -38.2% ). In  the as

sessment o f D e e p N a m e ’ s usefulness in  rea l-w orld  projects, 

the team members agree that our suggested method names 

are more m eaningful than the current names in  30/50 cases. 

For future work, we plan to integrate our M L  direction w ith  

program  analysis to im prove both accuracy and efficiency.
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