
20
21

 I
E

E
E

/A
C

M
 4

3r
d

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

 S
of

tw
ar

e
E

ng
in

ee
ri

ng
 (

IC
S

E
)

| 9
78

-1
-6

65
4-

02
96

-5
/2

0/
$3

1.
00

 ©
20

21
 I

E
E

E
 |

D
O

I:
 1

0.
11

09
/I

C
S

E
43

90
2.

20
21

.0
00

60

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

A Context-based Automated Approach for Method
Name Consistency Checking and Suggestion

Yi Li
Department of Informatics

New Jersey Institute of Technology
New Jersey, USA

Email: yl622@njit.edu

Shaohua Wang*
Department of Informatics

New Jersey Institute of Technology
New Jersey, USA

Email: davidsw@njit.edu

Tien N. Nguyen
Computer Science Department

The University of Texas at Dallas
Texas, USA

Email: tien.n.nguyen@utdallas.edu

Abstract—Misleading method names in software projects can
confuse developers, which may lead to software defects and affect
code understandability. In this paper, we present De e p Na m e ,
a context-based, deep learning approach to detect method name
inconsistencies and suggest a proper name for a method. The key
departure point is the philosophy of “Show Me Your Friends, I’ll
Tell You Who You Are”. Unlike the state-of-the-art approaches, in
addition to the method’s body, we also consider the interactions
of the current method under study with the other ones including
the caller and callee methods, and the sibling methods in
the same enclosing class. The sequences of sub-tokens in the
program entities’ names in the contexts are extracted and used
as the input for an RNN-based encoder-decoder to produce the
representations for the current method. We modify that RNN
model to integrate the copy mechanism and our newly developed
component, called the non-copy mechanism, to emphasize on the
possibility of a certain sub-token not to be copied to follow the
current sub-token in the currently generated method name.

We conducted several experiments to evaluate De e p Na m e on
large datasets with +14M methods. For consistency checking,
D e e p Na m e improves the state-of-the-art approach by 2.1%,
19.6%, and 11.9% relatively in recall, precision, and F-score,
respectively. For name suggestion, De e p Na m e improves rela-
tively over the state-of-the-art approaches in precision (1.8%-
30.5%), recall (8.8%-46.1%), and F-score (5.2%-38.2%). To
assess D e e p Na m e ’s usefulness, we detected inconsistent methods
and suggested new method names in active projects. Among 50
pull requests, 12 were merged into the main branch. In total, in
30/50 cases, the team members agree that our suggested method
names are more meaningful than the current names.

Index Terms—Naturalness of Software, Deep Learning, Entity
Name Suggestion, Inconsistent Method Name Checking. I.

I. In t r o d u c t i o n

Meaningful and succinct names of program entities play a
vital role in code understandability [3]. Misleading names in
software libraries can confuse developers and cause them make
API misuses, leading to serious defects [10]. During software
development, the name of a method can become inconsistent
with respect to its intended functionality. The first scenario is
that the inconsistency occurs during the coding of a method,
when a misleading or confusing name is given to the method.
In the second scenario, inconsistency occurs during software
evolution in which code changes make the method’s name and
its implementation become inconsistent with one another.

*
Corresponding Author

Several approaches were proposed to detect the inconsis-
tency between the methods’ names and source code, and to
suggest an alternative name if such inconsistency occurs. The
approaches follow mainly two directions: information retrieval
(IR) [18], [20] and machine learning (ML) [3], [4], [7], [28].
The idea of IR approaches is that similar methods should
have similar names [20]. Thus, they search for the names of
methods with similar bodies to suggest for a method with
an inconsistent name. The IR approaches generally follow a
searching strategy, thus, cannot recommend a new method
name that is un-seen in the training data. The second di-
rection is machine learning (ML) [3], [4], [7], [28]. The
ML approaches can overcome the key limitation of the IR
direction due to its capability of generating a new name. While
code2vec [7] generates the method’s name based on the paths
over the AST of its body, MNire [28] uses the sub-tokens in the
program entities’ names. other approaches treat the method
name suggestion problem as the extreme summarization [4]
from the method’s body into a short text. Despite their
successes, the state-of-the-art ML approaches have limitations
in dealing with the methods having little content or the entities’
names that are irrelevant to the functionality.

In this paper, in addition to using the body and interface
of the method under study, we also leverage a philosophy for
this naming problem: “Show Me Your Friends, I ’ll Tell You
Who You Are”. That is, to characterize an entity/person, in
addition to using its/his/her own properties, one can rely on
the interactions of that entity/person with the surrounding and
neighboring entities/persons. For the method name suggestion,
examining only the content of the current method might be
insufficient. The surrounding and interacting methods of a
method m under study could include the methods that are
called within the body of m (callees), and the methods that
are calling m (callers). The neighboring methods are the ones
within the same class with m (siblings). The information from
the enclosing class also provides features for such characteri-
zation of a method. The key features from the caller and callee
methods, sibling methods, and the enclosing class are used in
addition to the features from the internal body and interface
of the method m to verify the consistency of the method with
regard to its name, and to suggest a proper method name.
Each of those sources constitutes a context that is helpful

978-1-6654-0296-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00060

574

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

for method name consistency checking and recommendation.
Some methods have little content, but with sufficient contexts
and vice versa. Thus, all contexts are complementary to one
another in name consistency checking and suggestion.

We develop DEEPNAME, a context-based approach for
method name consistency checking and suggestion. For the
method m under study, it extracts the features from four con-
texts: the internal context, the caller and callee contexts, sib-
ling context, and enclosing context. For name suggestion, only
the callee methods are used because the callers of m might not
be written yet (the current method does not have a name yet).
We use the name features, specifically, the sequences of sub-
tokens from the program entities within each context, instead
of AST or PDG. It is reported that to infer a method name,
using sub-tokens yields better accuracy than using the AST
and PDG of the method [28]. The insight is that the naturalness
of names plays crucial role in method name inference, i.e.,
method name depends more on entities’ names than AST or
PDG (with data/control flows) [28]. AST and PDG capture the
structure and procedure of the task, while the method’s name
is the summary of the task. De e p Na m e uses an RNN-based
encoder-decoder to combine all the sequences of sub-tokens in
the contexts into a sequence of vectors for m. A convolution
layer is used on the vector for m to classify the given name to
be consistent or not. To suggest a name for the given method,
we use our vocabulary to map all the generated vectors into
the sub-tokens to compose the method name.

We also modify the operations of the aforementioned RNN-
based encoder-decoder to integrate the copy mechanism [11]
and the novel non-copy mechanism. A recent study on the
methods’ names [28] has reported that the high percentage
of the sub-tokens of a method name appears in a set of the
sub-tokens from entities’ names in a method. Due to this, the
copy mechanism helps emphasize on the possibility of copying
certain sub-tokens from the contexts to the output, i.e, the
suggested method name. The non-copy mechanism is designed
to determine the possibility of a sub-token that must not be
copied to follow the current sub-token in the currently gen-
erated method name. The non-copy mechanism complements
to the copy one in the way that it pushes down the unlikely
candidates (with the sub-tokens not following a certain token)
in the resulting ranked list. Thus, the likely candidates are
pushed up in the list, improving suggestion accuracy.

We conducted several experiments to evaluate DEEPNAME

in method name consistency checking and in method name
recommending on two large datasets used in prior works with
+2M and +14M methods [28]. For inconsistency checking,
DEEPNAME outperformed the state-of-the-art approaches in
Liu et al. [20] and MNire [28] by relatively 13.3% and 2.1% in
recall, 34.9% and 19.6% in precision, and 25.4% and 11.9% in
F-score. For method name suggestion, DEEPNAME improves
relatively over the state-of-the-art approaches in both recall
(8.8%-46.1%) and precision (1.8%-30.5%). There are 44.3%
of the cases suggested by DEEPNAME that exactly match with
the correct method names in the oracle, and 4.7% of those
cases (i.e., 2.1% of total cases) do not appear in training data.

1 private void declareGrouping(BoltDeclarer boltDeclarer,
Node parent, String streamId, GroupingInfo
grouping) {

2 // the old inconsistent method name is declareStream
3 if (grouping == null) {
4 boltDeclarer.shuffleGrouping(parent.getComponentId(),

streamId);
5 } else {
6 grouping.declareGrouping(boltDeclarer, parent.get

ComponentId(), streamId, grouping.getFields());

7 }
8 }

Fig. 1: An Example of Inconsistent Method Name

This shows that DEEPNAME can learn to suggest the method
names, rather than retrieving what have been stored. In total,
there are 11.9% of the cases in which the names are not
previously seen in the training data. The precision and recall of
this set of generated names are 57.6% and 55.1% respectively.
To assess usefulness, we made 50 pull requests (PRs) on the
suggesting new names for the inconsistent methods as detected
by DEEPNAME. Among them, 12 PRs were actually merged
into the main branch, and 18 were approved for later merging.
In total, there are 60% of the cases that team members agreed
that our suggested names are more meaningful than the current
names. This paper makes the following contributions:

A. Representation and Tool: A novel approach that uses
both internal and interaction contexts for method name con-
sistency checking and suggestion.

B. Novel technique: In De e p Na m e , we modify an RNN-
based encoder-decoder to integrate a newly developed mecha-
nism, called Non-copy mechanism, to help our model pushes
correct candidates to the top, improving top-ranked accuracy.

C. Empirical Results: our empirical evaluation shows that
1) De e p Na m e is useful and more accurate than the state-of-
the-art approaches in real-world projects and in a live study;
2) all four contexts complement to one another and contribute
much to high accuracy. our replication package is in [1].

II. Mo t i v a t i n g Ex a m p l e s

A. Examples
Figure 1 shows an example in Apache Storm project having

the method declareGrouping with an inconsistent name. It is
used to declare a group information for a stream. In an earlier
version, the method was given the name declareStream, which
was deemed to be confusing and inaccurately reflecting the
functionality of this method. Therefore, in a later version, a
developer performed refactorings to rename the method into
declareGrouping and at the same time performed code partition.

This example shows a common case in which during the
course of software development, the name of a method has
become confusing and inconsistent with its functionality. Thus,
an automated tool to detect inconsistent method names is
helpful for developers to avoid confusing and mistakes.

When the method name is identified as inconsistent, it is
also useful to have a tool to recommend a new name for the
method. There are several factors that a tool can leverage to

575

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

1 private Dimension calculateFlowLayout(boolean
bDoChilds){

2 ...
3 if (getParent()!=null && getParent()... JViewport) {
4 JViewport viewport = (JViewport) getParent();
5 maxWidth = viewport.getExtentSize().width;
6 } else if (getParent() != null){
7 maxWidth = getParent().getWidth();
8 } else {
9 maxWidth = getWidth();

10 }
11 ...
12 Dimension d = m.getPreferredSize();
13 ...
14 }
15

16 public Dimension | XXXXXXXXXXXXXXXX]() {

17 // The consistent method name is getPreferredSize
18 return calculateFlowLayout(false);
19 }

Fig. 2: An Example of Method Name Suggestion

suggest a new name for the method. First, a tool can rely
on the body (i.e., the content) of the method to suggest its
name. Second, the types and names of the arguments and
return type of the method could also be used to predict the
method’s name. The first and second factors are referred to as
the internal content and the interface of the method under
study. These two factors represent the only two key sources
of information that the state-of-the-art approaches have been
using for method name checking/suggestion. Liu et al. [20] use
clone detection on the methods’ bodies to search for similar
methods to suggest similar names. Alon et al. [7] also rely
on the method’s content, however, explore code structures by
using embeddings built from the paths over the abstract syntax
tree (AST) of the method under study. Allamanis et al. [3], [4]
and Nguyen et al. [28] also make use of the method’s body,
method interface, and class name, however, break down the
names of program entities into sub-tokens, and then use them
to suggest the method name via neural network models [4],
[28] or a clustering algorithm in the vector space [3].

Despite their successes, the state-of-the-art approaches do
not work for the methods with little contents in their bodies.
The method at line 16 in Fig. 2 in Tina POS project is named
getPreferredSize. The method contains a single call to calculate-

FlowLayout. Assume that one wants to use an existing name
suggestion tool for the body of this method. However, the
existing approaches relying on the method’s body or interface
do not work because 1) none of the tokens of the correct name
(getPreferredSize) appears there; 2) the code structure in the
body does not help in predicting the method’s name. our tool
suggests the correct name getPreferredSize, while MNire [28]
uses the body to suggest the name getFlow. Thus, simply using
the method’s body and interface is not sufficient.

B. Key Ideas
1) Show Me Your Friends, I’ll Tell You Who You

Are: In addition to the method’s body and interface, we
characterize a method by the surrounding methods that interact
with the method under study. In this problem, the surrounding

and neighboring methods of a method m under study could
include the methods that are called within the body of m
(let us call them callees), the methods that are calling m
(callers), the methods within the same class with m (siblings),
and the program elements declared in the enclosing class of
m. For method name consistency checking, in addition to
the method’s body and interface, we could use all of those
neighboring methods. For name suggestion, we could use
callees and siblings since the callers of m might not be written
yet at the time that the current method m is being edited.

In this example, while the content of m is short, the
callee context, i.e., the body of the method calculateFlowLayout,
contains sufficient information for name suggestion. In Fig. 2,
examining the body of the callee method calculateFlowLayout,
we can see that the sub-tokens of the consistent method name
getPreferredSize appear in the names of the program entities
in the callee. First, the sub-token get appears at lines 3-7, 9,
and 12. Second, the sub-token Preferred appears at line 12.
Third, the sub-token Size appears at line 5 and line 12. For
consistency checking, callers and sibling methods can be
used since they might be available. In general, the contexts
complement to one another and to the internal content of
the method, contributing to name suggestion. With the nature
of source code, the case of little internal content and little
contexts of a method is rare.

2) Representation Learning from Multiple Contexts:
our model learns the representation to integrate names of vari-
ables, fields, method calls from multiple contexts. In addition
to the method’s body and interface (we call it internal context),
we also consider the interaction context, which includes all
the methods interacting with the current method m, i.e., caller
methods (if available) and callee methods. In Fig. 1, the two
sub-tokens declare and Grouping in the consistent method name
declareGrouping can be found at line 4 and line 6. We also use
the sibling methods in the same class (sibling context) because
they provide the tasks with the same theme.

Different contexts might have the sequences of sub-tokens
with different lengths and nature. For example, in some cases,
those sequences for callers/callees might positively contribute
or negatively impact in deriving the method name. To help our
model learn the importance of different contexts in different
situations, we use a learning scheme for the weights of the
contexts. In Fig. 2, we collect the internal context including
the body at line 18 and the method return type Dimension at line
16 as one type of context. We collect the name of the method
calculateFlowLayout. Also, we collect the body and interface of
the method calculateFlowLayout as the interaction context.

3) Sub-token Copy and Non-copy Mechanisms: It is
reported that the high percentage of sub-tokens of the method
names can be found in the set of the sub-tokens of the program
entities in the context. Thus, we leverage this by using
a copy mechanism for Recurrent Neural Network (RNN). This
emphasizes on the likelihood of directly copying a sub-token
from the input into the output position following a sub-token.

We also design a Non-copy mechanism that complements
to the copy one. As copying at a sub-token position, the non-

576

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

copy mechanism estimates the likelihood score that a certain
sub-token s must not be copied to follow the current sub-
token c. A higher score implies that the occurrence probability
of the sequence consisting of c following s is lower. Thus,
it helps our model push lower in the resulting ranked list
the incorrect candidates with those sub-tokens that must not
follow certain ones. The correct candidates thus are pushed
higher in the list, improving top-ranked accuracy (Table 5). For
example, as deriving the sub-token at the second position in the
method name, Non-copy pushes the candidates declareSchool or
declareStudent lower in the list since School and Student have
never been seen to follow declare in the training set. Thus, the
correct option declareGrouping will be ranked higher.

Importantly, instead of directly using RNN encoder-decoder,
we modify its operations to integrate our newly developed
Non-copy mechanism with the Copy mechanism to help better
predict the method name. The Copy and Non-copy mechanisms
complement each other. Assume that the currently predicted
name has two sub-tokens: A B. Copy mechanism suggests
Ci, C2, ..., Cn (from the input) to likely follow A B. That is,
Copy mechanism suggests C1 is likely to be copied, and Cn
is less. However, Non-copy mechanism can suggest that C2
(from the input) must not follow B because in training, it has
never seen B C2. Thus, with only Copy mechanism, C2 is
ranked 2nd, however, with both, we lower the ranking of C2.

III. Co n c e p t s a n d Ap p r o a c h Ov e r v i e w

Definition 1 (Caller and Callee Methods). A caller method
(caller for short) is a method calling the current method under
study for consistency checking or name suggestion. A callee
method (callee for short) is a method called within the body
of the current method.

Definition 2 (Contexts). We consider four types of context:
1. Internal Context: The internal context for the current

method contains the content in the body, types and names of
the arguments in the interface, and the method’s return type.

2. Interaction Context: The interaction context for the
current method includes 1) the names of the callers of the
current method, 2) the contents of the callers (i.e., bodies,
interfaces, return types), 3) the names of the callees, and 4)
the contents of the callees (bodies, interfaces, return types).

3. Sibling Context: The sibling context for the current
method m includes 1) the names of the methods in the
same class with m , and 2) the contents of sibling methods
(including the bodies, interfaces, and return types).

4. Enclosing Context: The enclosing context for the current
method includes 1) the name of the enclosing class of the cur-
rent method and 2) the names of the program entities, method
calls, field accesses, variables, and constants in the class.

Figure 3 shows DEEPNAME’s overview. It is aimed to help
in two usage scenarios. First, the project is in the development
process and the source code of the current method under con-
sideration and the source code of the callers, callees, siblings,
and the enclosing class are available. De e p Na m e can be used
to determine the consistency of its name, and then it is used

Project

Fig. 3: Overview of DEEPNAME’s Architecture

to suggest an alternative name if the current name is deemed
inconsistent. In the second scenario, the source code of the
current method is written, however, its caller methods are not
available since its name is not there yet. De e p Na m e can be
used to suggest a proper name for that method in this scenario.

There are four main steps in De e p Na m e :
1. Context Building. We collect internal context, interaction

context, sibling context, and enclosing context to build context
features. Specifically, for each type of context, we extract the
names of the program entities appearing in the context. We use
the CamelCase and Hungarian convention to break each name
into a sequence of sub-tokens. For example, calculateFlowLayout

is broken into calculate, Flow, Layout. We use the sequence of
all the sub-tokens of the program entities’ names in the same
order in the source code as the feature for that context. The ra-
tionale of using the sequence of sub-tokens as feature (instead
of PDG/AST) is the naturalness of names [28]: developers do
not give random names; they use names of program entities or
method calls/fields relevant to the task of the current method.

2. Context Representation Learning. After extracting as
features the sequences of sub-tokens for the contexts, we need
to convert those sequences into vector representations for the
models in the later steps. We use a word embedding model to
convert the sequences of sub-tokens into the vectors. We put
the vectors for all the sub-tokens in the order of the appear-
ances of those sub-tokens in the source code. As the result,
for each context, we have a sequence of representation vectors
corresponding to the sub-token sequence of that context.

3. Context-based Method Representation Learning.
De e p Na m e relies on all four contexts (internal, interaction,
sibling, enclosing). Thus, we need to produce a representation
for method m with the encoding of all contexts. From the
previous step, for a context, we have a sequence of represen-
tation vectors. At this step, we use an encoder to learn the
encoding of the features for a context. We then use a decoder
to combine the encoded information for all the contexts into a
representation for m, which has the integration of all contexts.

4. Consistency Checking and Method Name Suggestion.
At the last step, De e p Na m e has two separate models for
two tasks. For consistency checking, it takes as the input the
representation of the method m obtained from the previous
step with the existing method name to be checked, and feeds to
a two-channel CNN-based model [39] acting as a classifier to
classify the method name to be consistent or not. For method
name suggestion, each vector in the sequence of method
representation vectors is a sub-token representation vector. We
use our vocabulary to roll back all the vectors into the sub-
tokens and put them together to generate the method name.

577

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

P("Size") = P1 + P2 + P3IV. Co n t e x t Re p r e s e n t a t i o n Le a r n i n g

A. Context Building
Our first step is to build the contexts from source code. For

the internal context, sibling context, and enclosing context,
we directly extract the names from the program entities, the
return type, and the types in the interface. The names are
broken into sub-tokens, which are collected into the sequence
in the same appearance order in source code. The sequences
of those sub-tokens represent the contexts. For example, for
the method in Fig. 2 (line 16), the internal context is modeled
by the sequence of sub-tokens: calculate flow layout dimension.
The internal context also includes the sub-tokens in the return
type, the types and names of the parameters of the method.
The trivial (sub)tokens with a single character are removed.

For the interaction context, we build a call graph using
Soot [33]. We then identify the callers and callees for the
current method under study. The sequences of sub-tokens are
built in the same manner as in the previous contexts to form the
feature for the interaction context. For consistency checking,
both callers and callees are considered. However, for method
name suggestion, we consider only the callee methods if the
caller methods do not exist yet. In Fig. 2, the callee part of the
interaction context includes the sub-tokens built from parsing
the method calculateFlowLayout:

get parent ... view port ... max width dimension get prefer size

boolean dimension

Other callees are processed in the same manner. All the
sequences of sub-tokens for all contexts are used as input in
the next step. We denote those sequences as context features.

B. Context Representation Learning
To convert the sequences of sub-tokens into vectors, we

consider all the sequences of sub-tokens for all the contexts as
the sentences of words. We use GloVe [29], a word embedding
technique, to produce the vectors for the collected sub-tokens.
We use GloVe, instead of Word2Vec, due to its capability of
learning to represent the words from the aggregated global
word-word co-occurrence statistics, which captures the rela-
tionships between neighboring sub-tokens.

To build the vector representation for each context, we
replace the sub-tokens in a sequence for the context feature
with the corresponding GloVe vectors for the sub-tokens. We
maintain the same order as the appearance order in the source
code. For example, for a context feature sequence Fi , we have
a sequence of vectors VFi = [v1, v2, ..., vn], in which vi is
a GloVe vector for a sub-token in the sequence. Because the
sequences of vectors might have different lengths, we perform
zero padding by filling the zero vectors for the sequences
whose lengths are less than the maximum length. This makes
the sequences of vectors have the same length.

V. Co n t e x t -Ba s e d Me t h o d Re p r e s e n t a t i o n

From the previous step, a context is represented as a se-
quence of vectors in which each vector represents a sub-token.
The goal of this step (Fig. 4) is to produce a representation
for the given method that integrates all of its contexts.

In terna l C on tex t In te rac tio n C o n tex t

Fig. 4: Context-based Method Representation Learning

A. Context Feature Encoding

We first use a RNN-based seq2seq encoder to encode the
sets of vectors for all contexts from the previous step. For
each context, we encode it with a Gate Recurrent Unit (GRU).
We use multiple GRUs because different contexts might have
different structures and types of information. Multiple GRUs
also help reduce the cross influence between different contexts.

The input for each GRU is the sequence VFi of n vectors
representing a context. Each vector represents a sub-token in
the names of the program entities in the context. For example,
in Fig. 4, one GRU is used for the interaction context including
the sub-tokens in the name, body, and interface of the callee
method: Calculate Flow Layout Another GRU is used for
the internal context including the body/interface of the current
method: Dimension Calculate Flow ... For each time step t, we
input one vector Vt in these n vectors and we get one hidden
state vector ht as the output for this time step. By collecting
all outputs for each time step, we have a list of hidden state
vectors H = [h1,..., hn], which is the output of GRUi.

Mathematically, the input sequence VFi = [v1, v2,..., vn] is
learned and converted into a hidden vector H i by the encoder.
The decoder is used to transfer the representation hidden
vector Hi back to the target sequence Y = [y1, y2,..., ym].

ht = f (vt, h t-1) (1)

h'x t = g (yt-1, ht-1 ,H i) (2)

p(yt|y1,...., yt - 1, Vf) = s(yt-1 ,h t ,H) (3)

Formula 1 is for encoder RNN. ht is the hidden state in time
step t; f represents the RNN dynamic function. Formula 2 is
for the decoder. hft is the hidden state for the decoder at time
step t; g represents the RNN dynamic function. Formula 3 is
for prediction: s is the possibility calculation function.

By putting together all the outputs Hi s of all GRUs, we
obtain all the hidden states vectors H = [H1, H2,..., Hi]. This
is the output of the encoder and used in the attention layer.

Because not all the sub-tokens in a context are equally
important, we aim to put emphasis on certain sub-tokens. Such
emphasis is learned via an attention mechanism. Technically,
the attention layer uses a changing context Ct instead of one

578

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

hidden vector Hi . Ct is calculated as the weighted sum of the
encoder’s hidden states:

n
Ct ^ ̂a t,ihi

i=1

r(h't- 1,hi)
a t,i — E n

i! =i ' r(ht-1,hi')
e

(4)

where r is the function used to represent the strength for
attention, approximated by a multi-layer neural network.

B. C ontext Feature D ecoding

This is our new component (Fig. 4) in which we modify
the operation of the GRUs at the output layer of the decoder
to integrate our newly developed Non-copy mechanism. It
operates in connection with the attention layer.

First, at each time step t for a GRU, the previous hidden
state h't-1 is used as the input for the attention layer and the
output of the attention layer will be used as the input of the
GRU at the time step t. In Fig. 4, the vector for the sub-token
Preferred obtained from the output of the attention layer at the
time step 2 is used as the input of the GRU at time step 3. This
emphasizes on the important sub-tokens while the decoding is
performed at each time step.

Next, at the output layer of the decoder, we also integrate the
operation of two mechanisms: CopyNet [11] and Non-copy.

1) CopyNet: CopyNet [11] is the copy mechanism with the
RNN seq2seq model and attention mechanism. It calculates the
possibilities of copying the input sub-tokens to the output. It
has two modes: generation-mode (denoted by GEN) and copy-
mode (CPY) for prediction. The attention mechanism with
RNN uses one function. The state update for CopyNet consid-
ers not only the word embedding, but also the corresponding
location-specific hidden state in the set of RNN encoder’s
hidden states H = [h1, h2, ..., ht].

p(yt|ht, yt-1, Ct, H) — p(yt, G E N |h't , y t-i, Ct, H) +

p(yt,C PY |fc i,y t-i,C t,H)
(5)

p(yt,G EN |.)

p(yt,C PY |.)

_LeuG E N (yt) Z e yt € dicali
0 yt € dicali n dici.
Z eUGEN (UNK) yt € dicali U dici. 1

1 V • eUCPY (vj) y p dic-Z Eio-.vj =yt e yt € dici
0 otherwise

(6)

(7)
uGEN and are the score functions for the generation-

mode and copy-mode; Z is the normalized term used by two
modes; and dicall and dicin are the overall dictionary and the
dictionary for the input only.

2) Non-copy mechanism: We aim to determine the pos-
sibility of a sub-token that must not follow the current sub-
token. For instance, if the sub-token get at the (m-1) position
is a known one, and the sub-token Preferred follows it in the
training dataset, we calculate the possibility that Preferred will
not follow the sub-token get. Such calculation is based on our
statistical analysis on the word distribution on the vocabulary.

Mathematically, for the method name ym-1 at the position
(m-1), we calculate the possibility that a certain sub-token

will not be the next one at the position m. That possibility
score, denoted by p(ym, NON|ym-1), is computed as

{
 c o u n i (y m l v m - l) 7-

1 c o u n t y ym, ym-1 £ d l , c a l l

0 m_ ym-1 / d i c a n

1 o thers
(8)

Where count(ym|ym-1) is the occurrence count for the sub-
token m that follows the sub-token at (m-1) in the training
dataset, and county . is the occurrence count for the sub-
token at (m-1). This formula is to calculate the word distribu-
tion possibility, which is between [0,1]. The larger value means
that this sub-token has higher possibility of not following
the previous sub-token at (m-1). Moreover, because we have
multiple context features as input, which can pass to the copy
mode, we add all the possibilities together as the total copy-
mode possibilities with different weights. With this, the copy-
mode Formula 7 has now become:

i

p (y t ,N E W |.) = ^ W ipi (y t,C P Y \.)+ W N o Np (y t,N O N |yt_ i) (9)
i= l

Where Wi is a trainable weight for different types of context
features, W NOn is a trainable weight and always less than
zero, and I is the total number of types of context features.

3) M ethod R epresentation D ecoding: We have modified
the decoder part (see our new component in Fig. 4) to integrate
the copy and non-copy mechanisms. In the traditional GRU
for an RNN decoder, the output layer is computed according
to Formula 2. We still keep that computation as one of the
three factors to determine the output of the decoder, which is
shown as Generation Mode in Fig. 2. For example, for the sub-
token Size after Preferred, that computation is as P(Size,GEN).
In addition, we also integrate the CopyNet mechanism to
determine the possibility of a sub-token based on the sub-token
copying as in Formula 7 in Section V-B1: P(Size, CPY). For
Non-copy mechanism, we integrate with the copy mechanism
from Formula 8. Thus, the new formula for the combination
of copy and non-copy mechanisms is Formula 9.

The possibility score of a sub-token as the output of the
decoder at a time step t is the summation of the three factors.
Thus, the possibility score of a sub-token, e.g., w=Size, is
calculated as P(w) = P1(w,GEN) + P2(w,CPY) + P3(w,NON). We
will pick the representation vector for the sub-token with the
highest possibility score in the current time step t as the output
of the decoder at that time step.

Finally, after having the prediction vector Vt for all time
steps, we put them together to obtain a set of vectors in the
original order as the set of vectors Vcur for the current method.

VI. Co n s i s t e n c y Ch e c k i n g a n d Na m e Su g g e s t i o n

A. Consistency Checking

To check whether the method name is (in)consistent, we
use a two-channel CNN model [39] as a classifier on the set
of vectors Vcur, which can be viewed as a matrix Mcur. To
build the second channel, we apply the same word embedding
step to represent the name of the current method as the set

579

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

o f vectors Vexist. We consider that set as the m atrix Mexist
and combine w ith the m atrix Mcur to fo rm the two-channel

representation m atrix Mclassification = [Mcur, Mexist], which
is fed to the two-channel C N N model. The output is produced

by the softmax function. The value is between [0-1] in which

1 represents consistency and 0 represents inconsistency.

B. M ethod N am e Suggestion

We consider the sequence Vcur produced by the previous

step is the vector representations fo r the method name under

study. Specifically, we consider each vector Vk as the repre

sentation fo r a sub-token in the suggested name o f the method.

From the dictionary dicall fo r a ll the vocabulary in the corpus,

we find the closest vector Vsk to the vector Vk and use the

sub-token sk corresponding to Vsk as the suggested sub-token

fo r Vk. F inally, we obtain the sequence o f the sub-tokens fo r

a ll Vks. The resulting sequence is considered as the suggested

name fo r the method under study. The order o f the sub-tokens

is the same as the order o f the vectors Vk s in the sequence o f

the representation vectors fo r the method Vcur.

V I I . E m p i r i c a l E v a l u a t i o n

A. Research Questions
RQ1. Method Name Consistency Checking Comparative
Study. How w e ll does D e e p N a m e perform in comparison w ith

the state-of-the-art method consistency checking approaches?

RQ2. Method Name Suggestion Comparative Study. How does

D e e p N a m e perform in comparison w ith the state-of-the-art

method name suggestion approaches?

RQ3. Impact Analysis of Different Contexts and Weighting
Scheme. How do d istinct types o f contexts and the ir different

weights affect the overall performance o f D e e p N a m e ?

RQ4. Impact Analysis of Copy and Non-copy Mechanisms.
How do copy and non-copy mechanisms affect accuracy?

RQ5. Method Name Suggestion Accuracy Analysis. How does

D e e p N a m e perform on the un-seen method names and the

methods in various sizes?

RQ6. Live Study. How does D e e p N a m e perform on the

currently active rea l-w orld projects?

B. Experimental Methodology
1) D atasets: Corpus for Consistency Checking. For com

parison, we used the same dataset from L iu et al. [20], which

was also used in another baseline approach M N ire [28]. The

tra in ing dataset (Table I) from that corpus was collected from

the highly-rated, open-source projects from fou r communities,

namely Apache, Spring, Hibernate, and Google. I t contains

the latest versions o f 430 Java projects w ith +100 commits.

In total, i t has 2,119,573 methods, which were considered as

consistent names because the methods whose names are stable

fo r a long tim e were selected. For the testing dataset, L iu et
al. [20] m ined the methods whose names were m odified by

developers fo r the reasons o f misleading names. F inally, in

those projects, there are 1,402 methods w ith inconsistent

names. They random ly chose another 1,402 methods w ith

consistent names to fo rm a test dataset w ith 2,804 methods.

TABLE I: Corpus for Method Name Consistency Checking

Testing data Training data
#Methods 2,804 2,119,573
#Files - 251,362
#Projects - 430
#Unique method names - 540,547

T A B LE II: Corpus fo r M ethod Name Suggestion

Testing data Training data Total
#Project 1,022 9,200 10,222
#File 51,631 1,756,282 1,807,913
#Methods 466,800 13,992,028 14,458,828

Corpus for Method Name Suggestion. For comparison,

we used the same dataset as in code2vec [7] and M N ire [28],

w ith 10,222 top-ranked Java projects from G itHub. I t has

14,458,828 methods and 1,807,913 unique files. We sp lit the

corpus based on the number o f projects, instead o f files. The

project-based setting reflects better the rea l-w orld usage o f

D e e p N a m e where i t is trained on the set o f existing projects

and used to check fo r a new project. The overloading/overrid-

ing methods and generated method names were removed.

2) Em pirical Procedure: Let us present our procedure.

RQ1. Method Name Consistency Checking. We chose the

fo llow ing baselines: 1) Liu et al. [20], an IR approach to search

fo r s im ilar methods to suggest sim ilar names, 2) MNire [28],

an M L approach using seq2seq encoder-decoder on the sub

token sequences in the method’s body and interface. We

trained each model under study w ith the same tra in ing dataset

and tested i t w ith the same testing dataset.

For hyper-parameter tuning fo r a model, we used A u to M L

in N N I [22] to autom atically tune the parameters. We selected

the parameter set that helps a model obtain the highest F-score

and accuracy. For name consistency checking, 2,804 methods

are fo r testing; 90% (1,907,716 methods) o f the tra in ing data

are fo r tra in ing; and the remaining 10% are fo r tuning.

RQ2. Method Name Suggestion. We compared w ith the

fo llow ing baseline approaches: 1) MNire [28], 2) code2vec [7]

3) code2seq [5], and 4) path-based representation [6]. For

comparison, using the same procedure as M N ire [28], we

random ly sp lit the data by 80% fo r train ing, 10% fo r parameter

tuning, and 10% fo r testing.

RQ3-RQ4. Impact Analysis on various Components. We

varied our model (e.g., adding each context), and measured

accuracy. We used the parameter settings as in RQ1-RQ2.

RQ5. Accuracy Analysis on Method Name Suggestion. We

measure the accuracy on un-seen method names and on the

methods w ith d ifferent lengths in the same setting as RQ2.

RQ6. Live Study. We use our too l to check the method names

in the active G itH ub projects, make p u ll requests to rename

inconsistent ones, and evaluate the acceptance responses.

3) Evaluation M etrics: For method name consistency

checking, we compared the predicted results against the

ground tru th on consistent and inconsistent method names

provided as part o f the name consistency checking corpus [20]

580

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

TABLE III: RQ1. Method Consistency Checking Comparison
(C: Consistent Methods; IC: Inconsistent Methods)

Liu e t al. [20] MNire [28] De e pNa me
Precision 46.5% 54.1% 64.8%

C Recall 68.3% 80.6% 86.4%
F-score 55.3% 64.7% 74.1%

Precision 53.6% 60.5% 72.3%
IC Recall 81.3% 90.2% 92.1%

F-score 64.6% 72.4% 81.0%
Accuracy 56.8% 65.7% 75.8%

(Table I). For name suggestion, we compared the predicted
names by a model against the good method names in the name
suggestion corpus, which was part of code2vec [7] (Table II).

For consistency checking, we used the same evaluation
metrics as in Liu et al. [20] and MNire [28] including Precision,
Recall, and F-score, for both inconsistency (JC) and consistency
(C) classes. For JC class, Precision =

r. For C class, Precision =

|T P |
|T P |+|FP |

|TN |
|TN | + |FN |

, and Recall =

|TP| + |FN| . i o i C class ' ' ecision = |TN | + |f n | , and Recall =

l™F p | , in which T P is true positive (JC is classified as
IC), F N is false negative (JC is classified as C), T N is true

negative (C is classified as C), and F P is false positive (C
is classified as JC). For both JC and C , F-score is defined as
2xPrectstonxRecaii. For the overall in both JC and C , AccuracyPrectston+Recall * 1

|TP | + |TN | = |T P | + |TN |.is defined as T p |+|FP| + |TN| + |FN|
For method name suggestion, we used the same metrics as in

code2vec [7] and MNire [28]: Precision, Recall, and F-score over
case-insensitive sub-tokens. That is, for the pair of an expected
method name e and its recommended name r, precision and
recall are computed as: Precision(e, r)= | ^

\subtoken(r')nsubtoken(e')\
\subtoken(e) |

| subtoken(r) |
subtofcen(n) returnsand Recall(e, r)=

the sub-tokens in the name n. Precision, Recall, and F-score

of the set of the suggested names are defined as the average
values in all cases. In all experiments, we also counted the
exact-matched names (ExMatch) and the case-sensitive names.

C. Experimental Results
1) RQ1. Method Name Consistency Checking: As seen

in Table III, for inconsistent method name detection (IC),
De e p Na m e has a relative improvement of (35.0%, 13.3%,
25.5%) and (19.6%, 2.1%, 11.9%) on (Precision, Recall, and
F-score) in comparison with Liu et al. [20] and MNire [28],
respectively. We found that for Liu et al. [20], in many cases,
the inconsistent methods might not be classified as inconsistent
(lower Recall), and the predicted inconsistent methods might
be incorrect (lower Precision). The main reason is that the
principle of “methods with similar bodies have similar names
and vice versa” does not hold in many cases. For MNire,
several inconsistent methods are not classified as inconsistent
(lower recall) since the bodies use similar sub-tokens, but
the methods do not have the same tasks. For those cases,
De e p Na m e uses the caller and callee methods to complement
for the internal context in the characterization of a method, and
is able to detect the inconsistencies since it can detect methods
with the same usages but with different names.

TABLE IV: RQ2. Method Name Suggestion Comparison

code2vec[7 Path-Rep [6] code2seq [5 MNire [28] De e p Na m e

ExMatch 21.7% 23.3% 32.4% 38.9% 443%
Precision
Recall
F-score

60.2%
52.4%
56.0%

56.4%
49.2%
52.6%

72.3%
66.1%
69.1%

67.4%
63.1%
65.2%

73.6%
71.9%
72.7%

For consistent method name detection (C), De e p Na m e

has a relative improvement of (39.5%, 26.5%, 33.9%) and
(19.8%, 7.1%, 14.4%) on Precision, Recall, and F-score in
comparison with Liu et al. [20] and MNire [28], respectively.

Regarding accuracy as considering both consistent and
inconsistent name detection, De e p Na m e relatively improves
33.6% and 15.4% compared to Liu et al. [20] and MNire [28],
respectively. We found several consistent methods with similar
bodies, however with different names. For example, the meth-
ods on InputStream and OutputStream, but have the same body
of return stream;. Both Liu et al. [20] and MNire [28] relies on
the body, thus, cannot work in those cases, while De e p Na m e

distinguishes them via callers/callees and siblings. Moreover,
there are methods with the same bodies but names are different
due to different enclosing classes intended for different pur-
poses, e.g., process.start(), process.stop(). The baselines detected
them as inconsistent. De e p Na m e uses the callers/callees to
recognize its usage, thus, correctly detecting it as consistent.

2) RQ2. Method Name Suggestion: As seen in Table IV,
44.3% of the cases suggested by De e p Na m e at top-1 posi-
tions are exactly matched with the correct method names given
by developers. It has relative improvements from 13.9%-
104.1% compared with the baselines. It also achieves higher
F-score than all the baselines. Specifically, it has relative
improvements of 1.8%-30.5% in Precision, 8.8%-46.1% in
Recall, and 5.2%-38.2% in F-score over the baselines.

With regard to ExMatch, code2vec and path-based Rep have
lower values than De e p Na m e as they mainly encode path-
based contexts with tokens, which have shown as less repeti-
tive than the sub-tokens [28]. code2seq encodes the path-based
contexts as well as the sub-tokens. However, it failed to capture
the order of sub-tokens for the exact name recommendation.
code2seq often recommends the relevant sub-tokens, but not in
the right order. De e p Na m e improves code2seq by 37%. Also
MNire does not consider the callers/callees and siblings, thus
it cannot identify more sub-tokens than De e p Na m e .

With regard to Recall, we found that code2vec and path-based

Rep have lower recall than De e p Na m e because the base-
lines mainly encode path-based contexts within one method.
code2seq requires two methods with similar sub-tokens and/or
path contexts. MNire requires two methods with similar se-
quences of sub-tokens to have similar names. De e p Na m e

uses the bodies/interfaces as well as the interaction, sibling,
and enclosing class contexts, thus, is more flexible.

With regard to Precision, two methods can be realized in
the same structure, but are named differently since they are in
different classes and are used differently. Because two methods
have the same/similar AST path contexts, code2vec and Path-

based Rep suggest the same name, thus, they have lower preci-

581

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

TABLE V: RQ3. Context A nalysis on Consistency Checking

Internal
(A)

A+Enclosing
(B)

B+Siblings
(C)

C+Interaction
(De e p Na m e)

Precision 53.1% 54.4% 56.5% 64.8%
C Recall 79.3% 80.9% 81.9% 86.4%

F-score 63.6% 65.1% 66.9% 74.1%
Precision 59.2% 61.1% 63.4% 72.3%

IC Recall 88.4% 89.1% 89.3% 92.1%
F-score 70.9% 72.5% 74.2% 81.0%

Accuracy 64.2% 65.3% 67.3% 75.8%

TABLE VI: RQ3. Context A nalysis on N am e Suggestion

Internal A+Enclosing B+Siblings C+Interaction
(A) (B) (C) (De e p Na m e)

ExMatch 38.3% 38.8% 39.7% 44.3%
Precision 65.7% 66.3% 68.5% 73.6%

Recall 62.4% 63.9% 65.7% 71.9%
F-score 64.0% 65.1% 67.1% 72.7%

sions. M N ire uses the enclosing class but does not consider the

interaction and sibling contexts. Thus, in several such cases,

M N ire suggests the sam e name, w hile D e e p N a m e suggests

the correct nam e due to the callers/callees and siblings.

3) RQ3. Impact Analysis of Different Contexts and
Weights: A. Context Analysis. The base m odel in this

experim ent uses only internal context (the m ethod body and

interface). As seen in Table V, w hen adding the enclosing class

o f the m ethod (A+enclosing), accuracy increases by 1.1% (1.7%

relatively), as both F-scores for C and IC classes increase. C on-

sidering the sibling methods, accuracy additionally increases

2.0% (3.1% relatively) as com paring the colum ns (B) and (C).

Finally, with all the contexts, accuracy additionally increases

8.5%, i.e., 12.6% relatively. Thus, all contexts contribute

positively tow ard the overall accuracy.

W ith further analysis, w e have observed the following.

First, the enclosing class provides the context related to the

general them e o f the current method, e.g., InputStream versus

OutputStream. W hile the m ethod bodies are the sam e (return

stream;), D e e p N a m e is able to derive the correct nam es

getInputStream and getOutputStream by leveraging the enclosing

context. Second, the sibling context provides the nam es o f the

relevant m ethods to the current one. For example, in a class

that provides m ouse handling for a canvas, the sibling methods

onMouseUp and onMouseDown give useful sub-tokens to suggest

the m ethod nam e onMouseOver. Finally, the interaction context

helps suggest the nam es for the methods with little content

in the bodies, e.g., in delegation methods. U nlike the existing

approaches w ith only internal context, we leverage the interac-

tions, siblings, and enclosing contexts o f the m ethod as well as

internal context (body/interface) to achieve highest accuracy.

We also perform ed another experim ent to leave one context

out and com pare the accuracy with D e e p N a m e ’s accuracy

in order to determ ine the im pact o f each context. W ithout the

interaction context, accuracy and two F-scores reduce by 11.2%,

8.5% and 9.7% , respectively. W ithout the sibling context,

the perform ance decreases by 8.8%, 6.5%, and 7.9% on

TABLE VII: RQ4. Copy/Non-Copy in Consistency Checking

Seq2seq Seq2seq
+Copy

Seq2seq+Copy+Non-copy
(=De e p Na m e)

Precision 64.7% 69.8% 72.3%
C Recall 89.5% 91.2% 92.1%

F-score 75.1% 79.1% 81.0%
Precision 57.3% 59.6% 64.8%

IC Recall 82.4% 83.1% 86.4%
F-score 67.6% 72.1% 74.1%

Accuracy 68.8% 73.5% 75.8%

TABLE VIII: RQ4. Copy/Non-Copy in N am e Suggestion

Seq2seq Seq2seq+Copy Seq2seq+Copy+Non-copy
(=De e p Na m e)

ExMatch 39.4% 42.6% 44.3%
precision 69.3% 72.2% 73.6%

Recall 68.5% 70.4% 71.9%
F-score 68.9% 71.3% 72.7%

accuracy and two F-scores, respectively. The enclosing context

also positively contributes to high perform ance. In brief, the

internal and interaction contexts contribute the most.

The contributions o f contexts are also confirm ed by the

m ethod nam e suggestion results (Table VI). W hen adding

the enclosing context to the internal one, F-score increases

by 1.1%. W hen further adding the sibling context, F-score

additionally increases by 2.0%. Finally, adding the interaction

context, F-score additionally contributes 5.6%.

B. Impact of Weight Learning for Different Contexts. The
nature and the length of the sequences of sub-tokens in each
context might contribute differently. To help our m odel learn

the im portance o f each context, we use w eight learning with

Wi in Form ula 9. We com pared our m odel with the one

having equal weights. The result shows that with w eight learn-

ing, D e e p N a m e im proves 5.13% in accuracy for consistency

checking and 2.2% in F-score for nam e suggestion. Thus, our

w eight learning for contexts positively contributes to accuracy.

4) RQ4. Impact Analysis of Copy and Non-Copy Mech-
anisms: In this experim ent, we rem oved from our m odel both

Copy and Non-Copy m echanism s and used it as a baseline. We

then added each m echanism one-by-one to the baseline. As

seen in Tables V II-V III, Copy m echanism helps im prove over

the baseline m odel 6.8% relatively in accuracy for consistency

checking, and 3.4% relatively in F-score in nam e suggestion.

The newly developed Non-Copy m echanism helps addition-

ally im prove 3.1% relatively over seq2seq+Copy in consistency

checking accuracy, and helps im prove 2.7% relatively in nam e

suggestion. Thus, Non-copy com plem ents to Copy mechanism.

5) Illustration: Let us take an exam ple in our experim ent

to illustrate the effectiveness o f each com ponent in D e e p -

N a m e . Fig. 5 shows the top-ranked results for the nam e o f the

m ethod given in Fig. 6 w hose actual nam e is processFinallyStmt.

We show the top-ranked resulting lists o f the nam e for

several variations of D e e p N a m e in w hich w e gradually added

each com ponent/context to the previous model. The leftm ost

colum n is the result o f the m odel using only internal context

582

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Method Name Recommendation Results (Top-10 Ranked List) for Fig. 6

1 private static LiveCalc | XXXXXXXXXXX | (FinallyStmt s,

LiveSet onEntry) {
2 //Name: processFinallyStmt
3 return liveness(s.getBody(), onEntry);
4 }

Fig. 6: A Correctly Suggested Method Name

(body and interface). The next column is the result from a new
variation with the addition of a new component. For example,
the second column is the result from a model that considers
both internal and enclosing contexts; the third one is from the
model with internal, enclosing, and sibling contexts, etc.

Let us explain the resulting lists from all the variants and
the impacts of contributing components. As seen, both the
models Internal and Internal+Enclosing cannot suggest the correct
name in the top-10 lists. The body and interface contain the
sub-tokens Finally and Stmt, but do not contain the sub-token
process. By adding the enclosing context can only help improve
the ranking of the candidate method names that include sub-
token Finally and Stmt. However, by adding the sibling context,
Internal+Enclosing+Siblings is able to rank the correct method
name processFinallyStmt at the 8th position. The reason is that
the enclosing class in this case has several sibling methods
with the names starting with process, e.g., processOperation,
processLabeledStmtWrapper, etc. Thus, Internal+Enclosing+Siblings

is able to learn the sub-token process from the sibling methods,
and ranks the correct name higher.

By adding the interaction context, Internal+Enclosing+Sibl-

ings+Interaction can rank the correct name at the 6th position.
The reason is that the body and interface of the callee method
liveness contain the occurrences of process and stmts.

With the addition of the Copy mechanism, the new model
Internal+Enclosing+Siblings+Interaction+Copy improves the rank-
ing of the correct name to the 4th position. The reason is that
Copy mechanism can emphasize on the copying of the popular
and important sub-tokens, e.g., process, liveness. As seen, the
names with the sub-tokens process and liveness are ranked at
the top 5 positions in the column corresponding to this model.

Finally, De e p Na m e , with the addition of Non-copy mech-
anism, is able to rank the correct name at the top position.
The reason is that Non-copy can learn that the sub-token Set
must not follow processFinally. Thus, processFinallySet is pushed
down, and the sub-token Stmt following processFinally to pro-
duce the correct name processFinallyStmt is pushed to the top.

Fig. 7: Accuracy by different Methods’ Sizes in Test Set

TABLE IX: RQ7. Pull Requests of Real-world Projects

Accept Agree Disagree No-reply Total
12 18 11 9 50

6) RQ5. Accuracy Analysis on Method Name Sugges-
tion: We study the results on the suggested method names
that were not in the training data. There are +173K (11.9%)
out of +1,445K generated method name that were un-seen
during the training. The Precision, Recall, and F-score for this
set are 57.6%, 55.1%, and 56.3%, respectively. Importantly,
in 17.4% of these generated cases (i.e., 2.1% total cases),
the generated names exactly match the expected names in the
oracle. These numbers show that De e p Na m e performs well
for the un-seen method names and really learns to suggest
natural names, rather than retrieving method names that have
been stored in the training dataset.

Accuracy by the Sizes of Methods in Test Set. As seen
in Fig. 7, De e p Na m e works well on the methods with the
regular sizes of 1-25 LOCs. Even with the longer methods
(+25 LOCs), Precision and Recall decrease gracefully at 46.3%
and 41.9%, respectively. This shows that predicting the name
becomes harder for longer methods. Even so, in +8K cases of
33K long methods with +25 LOCs, De e p Na m e produced the
exact-match names with the correct ones.

7) RQ6. Live Study: To evaluate the usefulness of our tool,
we conducted a study on 100 randomly chosen, active Java
projects in GitHub. We used De e p Na m e trained as in RQ1 to
detect inconsistent method names, then submitted pull requests
(pRs) of method renaming suggested by the tool and assessed
PR acceptance rates. Overall, it identified 3K out of 133K
methods as inconsistent. To avoid much work for developers,
we randomly selected and made only 50 pull requests.

As seen in Table IX, among 50 PRs, 12 cases were approved
and merged by the development teams. Additionally, 18 PRs
have been validated and approved by the team members. For
those cases, the teams acknowledged that the current method

583

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

names are misleading, and agreed w ith the suggested names

as provid ing more meaningful names. However, at the tim e o f

w riting , the PRs have not been merged in to the main branch

due to the additional requirements o f review ing or testing. In

11 cases, the developers disagreed w ith our suggested names.

In some cases, the suggested names do not conform to coding

conventions in the project. Some cases involve template code.

In some cases, the names are o f the methods that override the

external libraries. There are s till 9 cases that we d id not get

responses. In brie f, in 30/50 cases, the developers confirmed

that the names suggested by D e e p N a m e are more m eaningful

than the current names. This shows that D e e p N a m e is useful

in rea l-world projects in both detecting inconsistent method

names and suggesting new names.

8) Threats to Validity: Our data has on ly Java code. For

code2vec [7], we used the same metrics fo r comparison (i.e.,

the accuracy fo r a set o f method names are the average o f those

fo r a ll names). We did not have a statistical test in comparison

since they did not provide ind iv idua l resulting names. Running

the ir too l requires a high-com putational machine. We could not

run L iu et al. [20]’ s name suggestion on our dataset despite our

efforts try ing and contacting the authors w ithou t responses.

9) Limitations: Despite the above successes, D e e p N a m e

also has the aspects that need to be improved. As any other

M L approaches, i t has the out-of-vocabulary issue. That is, it

cannot generate a sub-token that has never been seen in the

tra in ing data. However, as shown in the em pirical evaluation

section, D e e p N a m e is able to generate a new method name

from the sub-tokens that i t has encountered in the training

dataset. Because D e e p N a m e does not analyze the entire

project, i t does not perform w e ll fo r the overriding methods,

and the methods that override the A p Is in the external libraries.

A potential solution is to integrate our M L direction w ith

program analysis to guide the process o f the method name

generation. Moreover, D e e p N a m e does not w ork w e ll fo r the

method names w ith one single sub-token, or the methods w ith

long bodies or the long callers/callees.

V I I I . R e l a t e d W o r k

There are two categories o f approaches fo r method name

inconsistency detection and suggestion. The first one is In fo r

m ation Retrieval (IR). L iu et al. [20] relies on the princip le

that methods w ith sim ilar bodies have sim ilar names. In our

experiment, we showed that such princ ip le does not hold in

many cases. Jiang et al. [18] searches fo r the methods having

s im ilar return type and parameters, as w e ll as heuristics, to

derive method names. The key advantage o f these IR-based

approaches is that they are light-weighted and do not require

high computational power. Their key disadvantage is that

because searching in the set o f already-existed names, they

cannot generate a new name that were not in the tra in ing data.

The second category is machine learning (M L). M N ire [28]

explores the sub-tokens appearing in the methods’ bodies and

interfaces. A llam anis et al. [4] use a neural network w ith

attention and convolution to summarize code in to descriptive

summaries. A llam anis et al [3] pro ject a ll the sub-tokens in

the entities’ names in the method bodies in to the same vector

space and cluster them to compose method name. M N ire has

been shown to outperform code2vec [7], w h ich outperforms

A llam anis et al. [4] and A llam anis et al [3]. Those ML-based

approaches a ll re ly on ly on the method’ s body and interface.

There are several approaches fo r code embeddings.

Code2vec [7] abstracts source code by the paths over the AST

to produce vectors. Code2seq [5] generates a word sequence

from the structure o f source code. K e and Su [37]’ s approach

builds the embeddings to capture structures and semantics o f

a program. However, as shown in M N ire [28], using code

structure, AST, PDG is too strict in predicting method names.

There are several approaches to predict the names or types
of program entities w ith in the method bodies [30], [32], [34],

[35]. W h ile JSNeat [34] searches fo r names in a large corpus

to recover variable names in m in ified code, JSNice [32] and

JSNaughty [35] use CRF and machine translation. Natural

ize [2] learns and enforces a consistent naming conventions.

Several approaches use M L to generate texts from code [14],

[16], [17], [21], [36] and vice versa [12], [13], [23], [31],

or code m igration [24], [25], [26], [27]. Zheng et al. [38]

uses AST structure fo r such statistical machine translation

to produce comments. C O D E -N N [17] uses LS T M on code

sequence to model the conditional distribution o f a summary to

produce word by word. DeepCom [16] has a traversal on AST

fo r flattening, and uses seq2seq to produce code summary. Wan

et al. [36] use a deep reinforcement learning on A S T and code

sequence. There are several studies on name consistency and

naming convention [8], [9], [15], [19].

IX . C o n c l u s i o n

We introduce D e e p N a m e , a context-based deep learning

approach fo r inconsistency checking and method name sug

gestion. The fo llow ing key ideas enable our approach (1)

characterizing a method by the surrounding methods that are

interaction or siblings method fo r the method we are studying;

(2) learning the representation fo r the method w ith m ultip le

contexts; (3) using sub-token copying and non-copying mech

anisms to help better predict the name. We conducted several

experiments to evaluate D e e p N a m e .

O ur results showed high accuracy and usefulness o f D e e p

N a m e in rea l-w orld projects. For consistency checking,

D e e p N a m e improves the state-of-the-art approach by 2.1%,

19.6%, and 11.9% rela tive ly in recall, precision, and F-score,

respectively. For name suggestion, D e e p N a m e improves rela

tive ly over the existing approaches in precision (1.8% -30.5%),

recall (8.8% -46.1%), and F-score (5.2% -38.2%). In the as

sessment o f D e e p N a m e ’ s usefulness in rea l-w orld projects,

the team members agree that our suggested method names

are more m eaningful than the current names in 30/50 cases.

For future work, we plan to integrate our M L direction w ith

program analysis to im prove both accuracy and efficiency.

A c k n o w l e d g m e n t

This w ork was supported in part by the u S National Science

Foundation (NSF) grants CCF-1723215, CCF-1723432, TW C -

1723198, CCF-1518897, and CNS-1513263.

584

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

Re f e r e n c e s

[1] (2021) The github repository for this study. [Online]. Available:
https://github.com/deepname2021icse/DeepName-2021-ICSE

[2] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, ser. FSE
2014. ACM Press, 2014, pp. 281-293.

[3] ------, “Suggesting accurate method and class names,” in Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2015. New York, NY, USA: Association for
Computing Machinery, 2015, pp. 38-49. [Online]. Available:
https://doi.org/10.1145/2786805.2786849

[4] M. Allamanis, H. Peng, and C. A. Sutton, “A convolutional attention
network for extreme summarization of source code,” in Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, ser. JMLR Workshop
and Conference Proceedings, M. Balcan and K. Q. Weinberger,
Eds., vol. 48. JMLR.org, 2016, pp. 2091-2100. [Online]. Available:
http://proceedings.mlr.press/v48/allamanis16.html

[5] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” in 7th International
Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=H1gKYo09tX

[6] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general
path-based representation for predicting program properties,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. New
York, NY, USA: ACM, 2018, pp. 404-419. [Online]. Available:
http://doi.acm.org/10.1145/3192366.3192412

[7] ------, “Code2vec: Learning distributed representations of code,”
Proceedings of the ACM on Programming Languages, vol. 3,
no. POPL, pp. 40:1-40:29, Jan. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3290353

[8] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
What they are and how developers perceive them,” Empirical Softw.
Engg., vol. 21, no. 1, pp. 104-158, Feb. 2016.

[9] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier informa-
tiveness using part of speech information,” in Proceedings of the 8th
Working Conference on Mining Software Repositories, ser. MSR ’11.
New York, NY, USA: Association for Computing Machinery, 2011, pp.
203-206.

[10] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier
naming flaws and code quality: An empirical study,” in Proceedings of
the 16th Working Conference on Reverse Engineering (WCRE 2009),
Oct 2009, pp. 31-35.

[11] J. Gu, Z. Lu, H. Li, and V. O. Li, “Incorporating copying
mechanism in sequence-to-sequence learning,” in Proceedings of
the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Berlin, Germany: Association
for Computational Linguistics, Aug. 2016, pp. 1631-1640. [Online].
Available: https://www.aclweb.org/anthology/P16-1154

[12] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2016. ACM, 2016, pp.
631-642.

[13] T. Gvero and V. Kuncak, “Synthesizing Java expressions from free-
form queries,” in Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA 2015. ACM, 2015, pp. 416^32.

[14] T. Haije, “Automatic comment generation using a neural translation
model,” 2016.

[15] E. W. Host and B. M. Ostvold, “Debugging method names,” in Pro-
ceedings of the 23rd European Conference on ECOOP 2009 — Object-
Oriented Programming. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
294-317.

[16] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program
Comprehension, ser. ICPC ’18. ACM, 2018, pp. 200-210. [Online].
Available: http://doi.acm.org/10.1145/3196321.3196334

[17] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in Proceedings of
the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Aug. 2016, pp. 2073-2083. [Online]. Available:
https://www.aclweb.org/anthology/P16-1195

[18] L. Jiang, H. Liu, and H. Jiang, “Machine learning based automated
method name recommendation: How far are we,” in Proceedings of
the 34th ACM/IEEE International Conference on Automated Software
Engineering (ASE’19). IEEE CS, 2019.

[19] S. Kim and D. Kim, “Automatic identifier inconsistency detection using
code dictionary,” Empirical Softw. Engg., vol. 21, no. 2, pp. 565-604,
Apr. 2016.

[20] K. Liu, D. Kim, T. F. Bissyande, T. Kim, K. Kim, A. Koyuncu, S. Kim,
and Y. L. Traon, “Learning to spot and refactor inconsistent method
names,” in Proceedings of the 41th International Conference on Software
Engineering, ser. ICSE ’19. ACM, 2019, pp. 1-12.

[21] Z. Liu, X. Xia, C. Treude, D. Lo, and S. Li, “Automatic generation
of pull request descriptions,” in Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’19. IEEE Press, 2019, pp. 176-188. [Online]. Available:
https://doi.org/10.1109/ASE.2019.00026

[22] Microsoft, “Neural network intelligence.”
https://github.com/microsoft/nni, last Accessed May 9th, 2020.

[23] A. T. Nguyen, P. C. Rigby, T. Nguyen, D. Palani, M. Karanfil, and T. N.
Nguyen, “Statistical translation of english texts to api code templates,”
in 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2018, pp. 194-205.

[24] A. T. Nguyen, Z. Tu, and T. N. Nguyen, “Do contexts help in phrase-
based, statistical source code migration?” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2016,
pp. 155-165.

[25] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen,
“Statistical learning approach for mining api usage mappings for
code migration,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’14. New
York, NY, USA: Association for Computing Machinery, 2014, pp.
457-468. [Online]. Available: https://doi.org/10.1145/2642937.2643010

[26] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Lexical statistical
machine translation for language migration,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2013. New York, NY, USA: Association for
Computing Machinery, 2013, pp. 651-654. [Online]. Available:
https://doi.org/10.1145/2491411.2494584

[27] ------, “Divide-and-conquer approach for multi-phase statistical
migration for source code,” in Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’15. IEEE Press, 2015, pp. 585-596. [Online]. Available:
https://doi.org/10.1109/ASE.2015.74

[28] S. V. Nguyen, T. Le, and T. N. Nguyen, “Suggesting natural method
names to check name consistencies,” in Proceedings of the 42th Inter-
national Conference on Software Engineering, ser. ICSE ’20. ACM,
2020, pp. 1-12.

[29] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532-1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[30] H. Phan, H. A. Nguyen, N. M. Tran, L. H. Truong, A. T. Nguyen, and
T. N. Nguyen, “Statistical learning of API fully qualified names in code
snippets of online forums,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. ACM, 2018, pp.
632-642.

[31] M. Raghothaman, Y. Wei, and Y. Hamadi, “SWIM: Synthesizing what i
mean: Code search and idiomatic snippet synthesis,” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE
’16. ACM, 2016, pp. 357-367.

[32] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from ”big code”,” in Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’15. ACM, 2015, pp. 111-124.

[33] Soot, “Soot introduction.” https://sable.github.io/soot/, last Accessed July
11, 2019.

[34] H. Tran, N. Tran, S. Nguyen, H. Nguyen, and T. N. Nguyen, “Recovering
variable names for minified code with usage contexts,” in Proceedings
of the 41st International Conference on Software Engineering, ser.
ICSE’19. IEEE Press, 2019, pp. 1165-1175.

585

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

[35] B. Vasilescu, C. Casalnuovo, and P. Devanbu, “Recovering clear, natural
identifiers from obfuscated js names,” in Proceedings of the Hth Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017.
ACM, 2017, pp. 683-693.

[36] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S.
Yu, “Improving automatic source code summarization via deep
reinforcement learning,” CoRR, vol. abs/1811.07234, 2018. [Online].
Available: http://arxiv.org/abs/1811.07234

[37] K. Wang and Z. Su, “Blended, precise semantic program embeddings,”
in Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI 2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 121ÂjV134.
[Online]. Available: https://doi.org/10.1145/3385412.3385999

[38] M. L. Wenhao Zheng, Hongyu Zhou and J. Wu, “Codeattention:
translating source code to comments by exploiting the code constructs,”
Frontiers of Computer Science, vol. 13, pp. 565-578, 2018.

[39] S. Zagoruyko and N. Komodakis, “Learning to compare image patches
via convolutional neural networks,” in 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015, pp. 4353-4361.

586

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:22 UTC from IEEE Xplore. Restrictions apply.

